Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results

Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.

blue bPAC (BlaC) euPAC D. melanogaster in vivo E. coli in vitro rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.185496 Link to full text
Abstract: The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.

Optogenetically Induced Olfactory Stimulation in Drosophila Larvae Reveals the Neuronal Basis of Odor-Aversion behavior.

blue euPAC D. melanogaster in vivo Immediate control of second messengers Neuronal activity control
Front Behav Neurosci, 2 Jun 2010 DOI: 10.3389/fnbeh.2010.00027 Link to full text
Abstract: Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs) through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2) or the light-sensitive adenylyl cyclase (Pacalpha) were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation toward or away from the light source. Here we show that activation of Pacalpha expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.

Fast manipulation of cellular cAMP level by light in vivo.

blue euPAC D. melanogaster in vivo HEK293 Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Methods, 26 Nov 2006 DOI: 10.1038/nmeth975 Link to full text
Abstract: The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.
Submit a new publication to our database