Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results

A miniaturized E. coli green light sensor with high dynamic range.

green CcaS/CcaR E. coli
Chembiochem, 8 Feb 2018 DOI: 10.1002/cbic.201800007 Link to full text
Abstract: Genetically-engineered photoreceptors enable unrivaled control over gene expression. Previously, we ported the Synechocystis PCC 6803 CcaSR two-component system, which is activated by green light and de-activated by red, into E. coli, resulting in a sensor with 6-fold dynamic range. Later, we optimized pathway protein expression levels and the output promoter sequence to decrease transcriptional leakiness and increase the dynamic range to approximately 120-fold. These CcaSR v1.0 and 2.0 systems have been used for precise quantitative, temporal, and spatial control of gene expression for a variety of applications. Recently, others have deleted two PAS domains of unknown function from the CcaS sensor histidine kinase in a CcaSR v1.0-like system. Here, we apply these deletions to CcaSR v2.0, resulting in a v3.0 light sensor with 4-fold lower leaky output and nearly 600-fold dynamic range. We demonstrate that the PAS domain deletions have no deleterious effect on CcaSR green light sensitivity or response dynamics. CcaSR v3.0 is the best performing engineered bacterial green light sensor available, and should have broad applications in fundamental and synthetic biology studies.

Engineering an E. coli Near-Infrared Light Sensor.

near-infrared BphP1/PpsR2 E. coli
ACS Synth Biol, 9 Nov 2017 DOI: 10.1021/acssynbio.7b00289 Link to full text
Abstract: Optogenetics is a technology wherein researchers combine light and genetically engineered photoreceptors to control biological processes with unrivaled precision. Near-infrared (NIR) wavelengths (>700 nm) are desirable optogenetic inputs due to their low phototoxicity and spectral isolation from most photoproteins. The bacteriophytochrome photoreceptor 1 (BphP1), found in several purple photosynthetic bacteria, senses NIR light and activates transcription of photosystem promoters by binding to and inhibiting the transcriptional repressor PpsR2. Here, we examine the response of a library of output promoters to increasing levels of Rhodopseudomonas palustris PpsR2 expression, and we identify that of Bradyrhizobium sp. BTAi1 crtE as the most strongly repressed in Escherichia coli. Next, we optimize Rps. palustris bphP1 and ppsR2 expression in a strain engineered to produce the required chromophore biliverdin IXα in order to demonstrate NIR-activated transcription. Unlike a previously engineered bacterial NIR photoreceptor, our system does not require production of a second messenger, and it exhibits rapid response dynamics. It is also the most red-shifted bacterial optogenetic tool yet reported by approximately 50 nm. Accordingly, our BphP1-PpsR2 system has numerous applications in bacterial optogenetics.
Submit a new publication to our database