Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results

Optogenetic Control by Pulsed Illumination.

blue YtvA E. coli
Chembiochem, 14 Feb 2018 DOI: 10.1002/cbic.201800030 Link to full text
Abstract: Sensory photoreceptors evoke numerous adaptive responses in Nature and serve as light-gated actuators in optogenetics to enable the spatiotemporally precise, reversible and noninvasive control of cellular events. The output of optogenetic circuits can often be dialed in by varying illumination quality, quantity and duration. Here, we devise a programmable matrix of light-emitting diodes to efficiently probe the response of optogenetic systems to intermittently applied light of varying intensity and pulse frequency. Circuits for light-regulated gene expression markedly differed in their responses to pulsed illumination of a single color which sufficed for sequentially triggering them. In addition to quantity and quality, the pulse frequency of intermittent light hence provides a further input variable for output control in optogenetics and photobiology. Pulsed illumination schemes allow the reduction of overall light dose and facilitate the multiplexing of several light-dependent actuators and reporters.

Time-Resolved X-Ray Solution Scattering Reveals the Structural Photoactivation of a Light-Oxygen-Voltage Photoreceptor.

blue LOV domains Background
Structure, 8 May 2017 DOI: 10.1016/j.str.2017.04.006 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors are sensory proteins controlling a wide range of organismal adaptations in multiple kingdoms of life. Because of their modular nature, LOV domains are also attractive for use as optogenetic actuators. A flavin chromophore absorbs blue light, forms a bond with a proximal cysteine residue, and induces changes in the surroundings. There is a gap of knowledge on how this initial signal is relayed further through the sensor to the effector module. To characterize these conformational changes, we apply time-resolved X-ray scattering to the homodimeric LOV domain from Bacillus subtilis YtvA. We observe a global structural change in the LOV dimer synchronous with the formation of the chromophore photoproduct state. Using molecular modeling, this change is identified as splaying apart and relative rotation of the two monomers, which leads to an increased separation at the anchoring site of the effector modules.

Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

blue LOV domains Background
Nat Commun, 9 Dec 2015 DOI: 10.1038/ncomms10079 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.

Biophysical, mutational, and functional investigation of the chromophore-binding pocket of light-oxygen-voltage photoreceptors.

blue LOV domains Background
ACS Synth Biol, 5 Mar 2014 DOI: 10.1021/sb400205x Link to full text
Abstract: As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutations near the flavin chromophore modulate response kinetics and the effective light responsiveness. To probe for potential, inadvertent effects on receptor activity, we introduced these mutations into the engineered LOV photoreceptor YF1 and determined their impact on light regulation. While several mutations severely impaired the dynamic range of the receptor (e.g., I39V, R63K, and N94A), residue substitutions in a second group were benign with little effect on regulation (e.g., V28T, N37C, and L82I). Electron paramagnetic resonance and absorption spectroscopy identified correlated effects for certain of the latter mutations on chromophore environment and response kinetics in YF1 and the LOV2 domain from Avena sativa phototropin 1. Carefully chosen mutations provide a powerful means to adjust the light-response function of photoreceptors as demanded for diverse applications.
Submit a new publication to our database