Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 9 of 9 results
1.

Imaging of Morphological and Biochemical Hallmarks of Apoptosis with Optimized Optogenetic Actuators.

blue CRY2/CIB1 HEK293T HeLa Neuro-2a Cell death
PLoS ONE, 3 Oct 2019 DOI: 10.1074/jbc.ra119.009141 Link to full text
Abstract: The creation of optogenetic switches for specific activation of cell-death pathways can provide insights into apoptosis and could also form a basis for non-invasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/CIB, a blue light–activated protein–protein dimerization module from the plant Arabidopsis thaliana together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane (OMM)-targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer-membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2–BAX system (henceforth referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for the membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters for imaging key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we have created a next-generation Cry2/CIB–BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.
2.

Optogenetic perturbation of the biochemical pathways that control cell behavior.

blue CRY2/CIB1 HEK293T HeLa MTLn3
Meth Enzymol, 12 Mar 2019 DOI: 10.1016/bs.mie.2019.02.020 Link to full text
Abstract: Optogenetic tools provide a level of spatial and temporal resolution needed to shed new light on dynamic intercellular processes. In this chapter we outline specific protocols for applying these tools to cell motility (optogenetic cofilin), apoptosis [optogenetic Bcl-like protein 4 (Bax)], and protein kinase-mediated signaling pathways [optogenetic cAMP-dependent protein kinase (PKA)]. The activity of these optogenetic species is regulated by the light-mediated dimerization of a cryptochrome/Cib protein pair, which controls the intracellular positioning of the protein of interest. The light induced recruitment of cofilin to the cytoskeleton is utilized for directed migration studies and filopodial dynamics. Light-triggered migration of Bax to the outer mitochondrial membrane induces cellular collapse and eventual apoptosis. Finally, the light-mediated movement of PKA to specific intracellular compartments offers the means to assess the consequences of PKA activity in a site-specific fashion via phosphoproteomic analysis.
3.

A compendium of chemical and genetic approaches to light-regulated gene transcription.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Crit Rev Biochem Mol Biol, 24 Jul 2018 DOI: 10.1080/10409238.2018.1487382 Link to full text
Abstract: On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
4.

Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.

blue CRY2/CIB1 HEK293T MVD7 Signaling cascade control
Cell Chem Biol, 25 Oct 2017 DOI: 10.1016/j.chembiol.2017.09.011 Link to full text
Abstract: Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
5.

Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.

blue CRY2/CIB1 HEK293 S. cerevisiae
Nat Chem Biol, 11 Apr 2016 DOI: 10.1038/nchembio.2063 Link to full text
Abstract: Arabidopsis thaliana cryptochrome 2 (AtCRY2), a light-sensitive photosensory protein, was previously adapted for use in controlling protein-protein interactions through light-dependent binding to a partner protein, CIB1. While the existing CRY2-CIB dimerization system has been used extensively for optogenetic applications, some limitations exist. Here, we set out to optimize function of the CRY2-CIB system by identifying versions of CRY2-CIB that are smaller, show reduced dark interaction, and maintain longer or shorter signaling states in response to a pulse of light. We describe minimal functional CRY2 and CIB1 domains maintaining light-dependent interaction and new signaling mutations affecting AtCRY2 photocycle kinetics. The latter work implicates an α13-α14 turn motif within plant CRYs whose perturbation alters signaling-state lifetime. Using a long-lived L348F photocycle mutant, we engineered a second-generation photoactivatable Cre recombinase, PA-Cre2.0, that shows five-fold improved dynamic range, allowing robust recombination following exposure to a single, brief pulse of light.
6.

Optogenetic apoptosis: light-triggered cell death.

blue CRY2/CIB1 Cos-7 HeLa MTLn3 Cell death
Angew Chem Int Ed Engl, 25 Aug 2015 DOI: 10.1002/anie.201506346 Link to full text
Abstract: An optogenetic Bax has been designed that facilitates light-induced apoptosis. We demonstrate that mitochondrial recruitment of a genetically encoded light-responsive Bax results in the release of mitochondrial proteins, downstream caspase-3 cleavage, changes in cellular morphology, and ultimately cell death. Mutagenesis of a key phosphorylatable residue or modification of the C-terminus mitigates background (dark) levels of apoptosis that result from Bax overexpression. The mechanism of optogenetic Bax-mediated apoptosis was explored using a series of small molecules known to interfere with various steps in programmed cell death. Optogenetic Bax appears to form a mitochondrial apoptosis-induced channel analogous to that of endogenous Bax.
7.

Optogenetic engineering: light-directed cell motility.

blue CRY2/CIB1 Cos-7 MTLn3 REF52 Control of cytoskeleton / cell motility / cell shape
Angew Chem Int Ed Engl, 25 Aug 2014 DOI: 10.1002/anie.201404198 Link to full text
Abstract: Genetically encoded, light-activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark-state background remains a significant challenge. When placed within the framework of a genetically encodable, light-activatable heterodimerizer system, the actin-remodelling protein cofilin induces dramatic changes in the F-actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light-directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F-actin remodeling, formation of filopodia, and directed cell motility.
8.

Light-mediated control of DNA transcription in yeast.

blue red CRY2/CIB1 PhyB/PIF6 S. cerevisiae Cell cycle control Transgene expression
Methods, 15 Aug 2012 DOI: 10.1016/j.ymeth.2012.08.004 Link to full text
Abstract: A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light/cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems.
9.

Rapid blue-light-mediated induction of protein interactions in living cells.

blue CRY2/CIB1 HEK293T S. cerevisiae
Nat Methods, 31 Oct 2010 DOI: 10.1038/nmeth.1524 Link to full text
Abstract: Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
Submit a new publication to our database