Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results

Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.

red PhyB/PIF3 PhyB/PIF6 CHO-K1 in vitro NIH/3T3
Commun Biol, 2 Dec 2019 DOI: 10.1038/s42003-019-0687-9 Link to full text
Abstract: Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.

A live-cell screen for altered Erk dynamics reveals principles of proliferative control.

blue iLID mouse epidermal keratinocytes Signaling cascade control Cell cycle control
bioRxiv, 19 Jun 2019 DOI: 10.1101/675736 Link to full text
Abstract: Complex, time-varying responses have been observed widely in cell signaling, but how specific dynamics are generated or regulated is largely unknown. One major obstacle has been that high-throughput screens for identifying pathway components are typically incompatible with the live-cell assays used to monitor dynamics. Here, we address this challenge by performing a drug screen for altered Erk signaling dynamics in primary mouse keratinocytes. We screened a library of 429 kinase inhibitors, monitoring Erk activity over 5 h in more than 80,000 single live cells. The screen revealed both known and uncharacterized modulators of Erk dynamics, including inhibitors of non-EGFR receptor tyrosine kinases (RTKs) that increased Erk pulse frequency and overall activity. Using drug treatment and direct optogenetic control, we demonstrate that drug-induced changes to Erk dynamics alter the conditions under which cells proliferate. Our work opens the door to high-throughput screens using live-cell biosensors and reveals that cell proliferation integrates information from Erk dynamics as well as additional permissive cues.
Submit a new publication to our database