Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results

Optogenetics in Plants: Red/Far-Red Light Control of Gene Expression.

red PhyB/PIF6 A. thaliana leaf protoplasts N. tabacum leaf protoplasts
Methods Mol Biol, 11 Mar 2016 DOI: 10.1007/978-1-4939-3512-3_9 Link to full text
Abstract: Optogenetic tools to control gene expression have many advantages over the classical chemically inducible systems, overcoming intrinsic limitations of chemical inducers such as solubility, diffusion, and cell toxicity. They offer an unmatched spatiotemporal resolution and permit quantitative and noninvasive control of the gene expression. Here we describe a protocol of a synthetic light-inducible system for the targeted control of gene expression in plants based on the plant photoreceptor phytochrome B and one of its interacting factors (PIF6). The synthetic toggle switch system is in the ON state when plant protoplasts are illuminated with red light (660 nm) and can be returned to the OFF state by subsequent illumination with far-red light (760 nm). In this protocol, the implementation of a red light-inducible expression system in plants using Light-Emitting Diode (LED) illumination boxes is described, including the isolation and transient transformation of plant protoplasts from Arabidopsis thaliana and Nicotiana tabacum.

Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.

red PhyB/PIF3 CHO-K1 Cos-7 HEK293T HeLa NIH/3T3 zebrafish in vivo
ACS Synth Biol, 30 Mar 2015 DOI: 10.1021/acssynbio.5b00004 Link to full text
Abstract: Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices.
Submit a new publication to our database