Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optical control of transcription - genetically encoded photoswitchable variants of T7 RNA polymerase.

blue AsLOV2 in vitro
Chembiochem, 13 Jun 2019 DOI: 10.1002/cbic.201900298 Link to full text
Abstract: Light-sensing protein domains that link an exogenous light signal to the activity of an enzyme have attracted much notice for engineering new regulatory mechanisms into proteins and for studying the dynamic behavior of intracellular reactions as well as reaction cascades. Light-oxygen-voltage (LOV) photoreceptors are blue light-sensing modules that have been intensely characterized for this purpose and linked to several proteins of interest. For successful application of these tools it is crucial to identify appropriate fusion strategies for combining sensor and enzyme domains that sustain activity and light-induced responsivity. Terminal fusion of LOV domains is the natural strategy; however, this is not transferrable to T7 RNA polymerase since both of its termini are involved in catalysis. We show here that it is possible to covalently insert LOV domains into the polymerase protein while preserving its activity and generating new light-responsive allosteric coupling.
2.

LOV Domains in the Design of Photoresponsive Enzymes.

blue LOV domains Review
ACS Chem Biol, 15 Jun 2018 DOI: 10.1021/acschembio.8b00159 Link to full text
Abstract: In nature, a multitude of mechanisms have emerged for regulating biological processes and, specifically, protein activity. Light as a natural regulatory element is of outstanding interest for studying and modulating protein activity because it can be precisely applied with regard to a site of action, instant of time, or intensity. Naturally occuring photoresponsive proteins, predominantly those containing a light-oxygen-voltage (LOV) domain, have been characterized structurally and mechanistically and also conjugated to various proteins of interest. Immediate advantages of these new photoresponsive proteins such as genetic encoding, no requirement of chemical modification, and reversibility are paid by difficulties in predicting the envisaged activity or type and site of domain fusion. In this article, we summarize recent advances and give a survey on currently available design concepts for engineering photoswitchable proteins.
Submit a new publication to our database