Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy.

blue LOV domains Background
J Phys Chem Lett, 22 Aug 2016 DOI: 10.1021/acs.jpclett.6b01484 Link to full text
Abstract: Light-triggered reactions of biological photoreceptors have gained immense attention for their role as molecular switches in their native organisms and for optogenetic application. The light, oxygen, and voltage 2 (LOV2) sensing domain of plant phototropin binds a C-terminal Jα helix that is docked on a β-sheet and unfolds upon light absorption by the flavin mononucleotide (FMN) chromophore. In this work, the signal transduction pathway of LOV2 from Avena sativa was investigated using time-resolved infrared spectroscopy from picoseconds to microseconds. In D2O buffer, FMN singlet-to-triplet conversion occurs in 2 ns and formation of the covalent cysteinyl-FMN adduct in 10 μs. We observe a two-step unfolding of the Jα helix: The first phase occurs concomitantly with Cys-FMN covalent adduct formation in 10 μs, along with hydrogen-bond rupture of the FMN C4═O with Gln-513, motion of the β-sheet, and an additional helical element. The second phase occurs in approximately 240 μs. The final spectrum at 500 μs is essentially identical to the steady-state light-minus-dark Fourier transform infrared spectrum, indicating that Jα helix unfolding is complete on that time scale.
2.

Natural Resources for Optogenetic Tools.

blue green red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Opsins Phytochromes UV receptors Review
Methods Mol Biol, 2016 DOI: 10.1007/978-1-4939-3512-3_2 Link to full text
Abstract: Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
3.

A proposal for a dipole-generated BLUF domain mechanism.

blue BLUF domains Cryptochromes LOV domains Background
Front Mol Biosci, 3 Nov 2015 DOI: 10.3389/fmolb.2015.00062 Link to full text
Abstract: The resting and signaling structures of the blue-light sensing using flavin (BLUF) photoreceptor domains are still controversially debated due to differences in the molecular models obtained by crystal and NMR structures. Photocycles for the given preferred structural framework have been established, but a unifying picture combining experiment and theory remains elusive. We summarize present work on the AppA BLUF domain from both experiment and theory. We focus on IR and UV/vis spectra, and to what extent theory was able to reproduce experimental data and predict the structural changes upon formation of the signaling state. We find that the experimental observables can be theoretically reproduced employing any structural model, as long as the orientation of the signaling essential Gln63 and its tautomer state are a choice of the modeler. We also observe that few approaches are comparative, e.g., by considering all structures in the same context. Based on recent experimental findings and a few basic calculations, we suggest the possibility for a BLUF activation mechanism that only relies on electron transfer and its effect on the local electrostatics, not requiring an associated proton transfer. In this regard, we investigate the impact of dispersion correction on the interaction energies arising from weakly bound amino acids.
Submit a new publication to our database