Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results

A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary.

blue LOVTRAP in vitro Control of cytoskeleton / cell motility / cell shape Extracellular optogenetics
bioRxiv, 13 Nov 2021 DOI: 10.1101/2021.11.12.468440 Link to full text
Abstract: Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth, and assumed that it transports cargoes along microtubule tracks from nurse cells to the oocyte. Here we report that instead transporting cargoes along microtubules into the oocyte, cortical dynein actively moves microtubules in nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. We demonstrate this microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein can perform bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of cargo transport for fast cytoplasmic transfer to support rapid oocyte growth.
Submit a new publication to our database