Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results

Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts.

blue CRY2/CIB1 CRY2/CRY2 Cos-7 MC3T3-E1 primary mouse calvarial osteoblasts Control of cytoskeleton / cell motility / cell shape
Nat Commun, 21 Jun 2017 DOI: 10.1038/ncomms15831 Link to full text
Abstract: During bone remodelling, osteoclasts induce chemotaxis of osteoblasts and yet maintain spatial segregation. We show that osteoclasts express the repulsive guidance factor Semaphorin 4D and induce contact inhibition of locomotion (CIL) in osteoblasts through its receptor Plexin-B1. To examine causality and elucidate how localized Plexin-B1 stimulation may spatiotemporally coordinate its downstream targets in guiding cell migration, we develop an optogenetic tool for Plexin-B1 designated optoPlexin. Precise optoPlexin activation at the leading edge of migrating osteoblasts readily induces local retraction and, unexpectedly, distal protrusions to steer cells away. These morphological changes are accompanied by reorganization of Myosin II, PIP3, adhesion and active Cdc42. We attribute the resultant repolarization to RhoA/ROCK-mediated redistribution of β-Pix, which activates Cdc42 and promotes protrusion. Thus, our data demonstrate a causal role of Plexin-B1 for CIL in osteoblasts and reveals a previously unknown effect of Semaphorin signalling on spatial distribution of an activator of cell migration.

Labelling and optical erasure of synaptic memory traces in the motor cortex.

blue AsLOV2 HEK293 mouse in vivo rat cortical neurons rat hippocampal slices Control of cytoskeleton / cell motility / cell shape
Nature, 9 Sep 2015 DOI: 10.1038/nature15257 Link to full text
Abstract: Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.

Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling.

blue CRY2/CIB1 MCF7 Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci USA, 5 Jan 2015 DOI: 10.1073/pnas.1409667112 Link to full text
Abstract: Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction.

Guiding lights: recent developments in optogenetic control of biochemical signals.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Pflugers Arch, 16 Feb 2013 DOI: 10.1007/s00424-013-1244-x Link to full text
Abstract: Optogenetics arises from the innovative application of microbial opsins in mammalian neurons and has since been a powerful technology that fuels the advance of our knowledge in neuroscience. In recent years, there has been growing interest in designing optogenetic tools extendable to broader cell types and biochemical signals. To date, a variety of photoactivatable proteins (refers to induction of protein activity in contrast to fluorescence) have been developed based on the understanding of plant and microbial photoreceptors including phototropins, blue light sensors using flavin adenine dinucleotide proteins, cryptochromes, and phytochromes. Such tools offered researchers reversible, quantitative, and precise spatiotemporal control of enzymatic activity, protein-protein interaction, protein translocation, as well as gene transcription in cells and in whole animals. In this review, we will briefly introduce these photosensory proteins, describe recent developments in optogenetics, and compare and contrast different methods based on their advantages and limitations.

Spatiotemporal control of small GTPases with light using the LOV domain.

blue LOV domains Review
Meth Enzymol, 11 May 2011 DOI: 10.1016/b978-0-12-385075-1.00016-0 Link to full text
Abstract: Signaling networks in living systems are coordinated through subcellular compartmentalization and precise timing of activation. These spatiotemporal aspects ensure the fidelity of signaling while contributing to the diversity and specificity of downstream events. This is studied through development of molecular tools that generate localized and precisely timed protein activity in living systems. To study the molecular events responsible for cytoskeletal changes in real time, we generated versions of Rho family GTPases whose interactions with downstream effectors is controlled by light. GTPases were grafted to the phototropin LOV (light, oxygen, or voltage) domain (Huala, E., Oeller, P. W., Liscum, E., Han, I., Larsen, E., and Briggs, W. R. (1997). Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science278, 2120-2123.) via an alpha helix on the LOV C-terminus (Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K. M. (2009). A genetically encoded photoactivatable Rac controls the motility of living cells. Nature461, 104-108.). The LOV domain sterically blocked the GTPase active site until it was irradiated. Exposure to 400-500nm light caused unwinding of the helix linking the LOV domain to the GTPase, relieving steric inhibition. The change was reversible and repeatable, and the protein could be returned to its inactive state simply by turning off the light. The LOV domain incorporates a flavin as the active chromophore. This naturally occurring molecule is incorporated simply upon expression of the LOV fusion in cells or animals, permitting ready control of GTPase function in different systems. In cultured single cells, light-activated Rac leads to membrane ruffling, protrusion, and migration. In collectively migrating border cells in the Drosophila ovary, focal activation of photoactivatable Rac (PA-Rac) in a single cell is sufficient to redirect the entire group. PA-Rac in a single cell also rescues the phenotype caused by loss of endogenous guidance receptor signaling in the whole group. These findings demonstrate that cells within the border cell cluster communicate and are guided collectively. Here, we describe optimization and application of PA-Rac using detailed examples that we hope will help others apply the approach to different proteins and in a variety of different cells, tissues, and organisms.

Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo.

blue AsLOV2 D. melanogaster in vivo Schneider 2 Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 16 May 2010 DOI: 10.1038/ncb2061 Link to full text
Abstract: The small GTPase Rac induces actin polymerization, membrane ruffling and focal contact formation in cultured single cells but can either repress or stimulate motility in epithelial cells depending on the conditions. The role of Rac in collective epithelial cell movements in vivo, which are important for both morphogenesis and metastasis, is therefore difficult to predict. Recently, photoactivatable analogues of Rac (PA-Rac) have been developed, allowing rapid and reversible activation or inactivation of Rac using light. In cultured single cells, light-activated Rac leads to focal membrane ruffling, protrusion and migration. Here we show that focal activation of Rac is also sufficient to polarize an entire group of cells in vivo, specifically the border cells of the Drosophila ovary. Moreover, activation or inactivation of Rac in one cell of the cluster caused a dramatic response in the other cells, suggesting that the cells sense direction as a group according to relative levels of Rac activity. Communication between cells of the cluster required Jun amino-terminal kinase (JNK) but not guidance receptor signalling. These studies further show that photoactivatable proteins are effective tools in vivo.

A genetically encoded photoactivatable Rac controls the motility of living cells.

blue AsLOV2 3T3MEF HEK293 HeLa in vitro Control of cytoskeleton / cell motility / cell shape
Nature, 19 Aug 2009 DOI: 10.1038/nature08241 Link to full text
Abstract: The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
Submit a new publication to our database