Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results

Engineering of a bona fide light-operated calcium channel.

blue AsLOV2 D. melanogaster in vivo HEK293 HEK293T HeLa Immediate control of second messengers
Nat Commun, 11 Jan 2021 DOI: 10.1038/s41467-020-20425-4 Link to full text
Abstract: The current optogenetic toolkit lacks a robust single-component Ca2+-selective ion channel tailored for remote control of Ca2+ signaling in mammals. Existing tools are either derived from engineered channelrhodopsin variants without strict Ca2+ selectivity or based on the stromal interaction molecule 1 (STIM1) that might crosstalk with other targets. Here, we describe the design of a light-operated Ca2+ channel (designated LOCa) by inserting a plant-derived photosensory module into the intracellular loop of an engineered ORAI1 channel. LOCa displays biophysical features reminiscent of the ORAI1 channel, which enables precise optical control over Ca2+ signals and hallmark Ca2+-dependent physiological responses. Furthermore, we demonstrate the use of LOCa to modulate aberrant hematopoietic stem cell self-renewal, transcriptional programming, cell suicide, as well as neurodegeneration in a Drosophila model of amyloidosis.

Optogenetic toolkit for precise control of calcium signaling.

blue Cryptochromes LOV domains Review
Cell Calcium, 16 Jan 2017 DOI: 10.1016/j.ceca.2017.01.004 Link to full text
Abstract: Calcium acts as a second messenger to regulate a myriad of cell functions, ranging from short-term muscle contraction and cell motility to long-term changes in gene expression and metabolism. To study the impact of Ca2+-modulated 'ON' and 'OFF' reactions in mammalian cells, pharmacological tools and 'caged' compounds are commonly used under various experimental conditions. The use of these reagents for precise control of Ca2+ signals, nonetheless, is impeded by lack of reversibility and specificity. The recently developed optogenetic tools, particularly those built upon engineered Ca2+ release-activated Ca2+ (CRAC) channels, provide exciting opportunities to remotely and non-invasively modulate Ca2+ signaling due to their superior spatiotemporal resolution and rapid reversibility. In this review, we briefly summarize the latest advances in the development of optogenetic tools (collectively termed as 'genetically encoded Ca2+ actuators', or GECAs) that are tailored for the interrogation of Ca2+ signaling, as well as their applications in remote neuromodulation and optogenetic immunomodulation. Our goal is to provide a general guide to choosing appropriate GECAs for optical control of Ca2+ signaling in cellulo, and in parallel, to stimulate further thoughts on evolving non-opsin-based optogenetics into a fully fledged technology for the study of Ca2+-dependent activities in vivo.

Near-infrared photoactivatable control of Ca(2+) signaling and optogenetic immunomodulation.

blue AsLOV2 HEK293 HEK293T HeLa mouse in vivo mouse T cells Signaling cascade control Immediate control of second messengers
Elife, 8 Dec 2015 DOI: 10.7554/elife.10024 Link to full text
Abstract: The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca(2+) oscillations and Ca(2+)-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca(2+)-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded 'photoactivatable adjuvant' to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote and wireless control of Ca(2+)-modulated activities with tailored function.
Submit a new publication to our database