Qr: color:"near-infrared"
Showing 1 - 25 of 111 results
1.
Optogenetic tools for optimizing key signalling nodes in synthetic biology.
-
Tian, Y
-
Xu, S
-
Ye, Z
-
Liu, H
-
Wei, D
-
Zabed, HM
-
Yun, J
-
Zhang, G
-
Zhang, Y
-
Zhang, C
-
Liu, R
-
Li, J
-
Qi, X
Abstract:
The modification of key enzymes for chemical production plays a crucial role in enhancing the yield of targeted products. However, manipulating key nodes in specific signalling pathways remains constrained by traditional gene overexpression or knockout strategies. Discovering and designing optogenetic tools enable us to regulate enzymatic activity or gene expression at key nodes in a spatiotemporal manner, rather than relying solely on chemical induction throughout production processes. In this review, we discuss the recent applications of optogenetic tools in the regulation of microbial metabolites, plant sciences and disease therapies. We categorize optogenetic tools into five classes based on their distinct applications. First, light-induced gene expression schedules can balance the trade-off between chemical production and cell growth phases. Second, light-triggered liquid-liquid phase separation (LLPS) modules provide opportunities to co-localize and condense key enzymes for enhancing catalytic efficiency. Third, light-induced subcellular localized photoreceptors enable the relocation of protein of interest across various subcellular compartments, allowing for the investigation of their dynamic regulatory processes. Fourth, light-regulated enzymes can dynamically regulate production of cyclic nucleotides or investigate endogenous components similar with conditional depletion or recovery function of protein of interest. Fifth, light-gated ion channels and pumps can be utilized to investigate dynamic ion signalling cascades in both animals and plants, or to boost ATP accumulation for enhancing biomass or bioproduct yields in microorganisms. Overall, this review aims to provide a comprehensive overview of optogenetic strategies that have the potential to advance both basic research and bioindustry within the field of synthetic biology.
2.
Capitalizing on mechanistic insights to power design of future-ready intracellular optogenetics tools.
Abstract:
Intracellular optogenetics represents a rapidly advancing biotechnology that enables precise, reversible control of protein activity, signaling dynamics, and cellular behaviours using genetically encoded, light-responsive systems. Originally pioneered in neuroscience through channelrhodopsins to manipulate neuronal excitability, the field has since expanded into diverse intracellular applications with broad implications for medicine, agriculture, and biomanufacturing. Key to these advances are photoreceptors such as cryptochrome 2 (CRY2), light-oxygen-voltage (LOV) domains, and phytochromes, which undergo conformational changes upon illumination to trigger conditional protein-protein interactions, localization shifts, or phase transitions. Recent engineering breakthroughs-including the creation of red-light responsive systems such as MagRed that exploit endogenous biliverdin-have enhanced tissue penetration, minimized phototoxicity, and expanded applicability to complex biological systems. This review provides an overarching synthesis of the molecular principles underlying intracellular optogenetic actuators, including the photophysical basis of light-induced conformational changes, oligomerization, and signaling control. We highlight strategies that employ domain fusions, rational mutagenesis, and synthetic circuits to extend their utility across biological and industrial contexts. We also critically assess current limitations, such as chromophore dependence, light delivery challenges, and safety considerations, so as to frame realistic paths towards translation. Looking ahead, future opportunities include multi-colour and multiplexed systems, integration with high-throughput omics and artificial intelligence, and development of non-invasive modalities suited for in vivo and industrial applications. Intracellular optogenetics is thus emerging as a versatile platform technology, with the potential to reshape how we interrogate biology and engineer cells for therapeutic, agricultural, and environmental solutions.
3.
Multimodal Key Anti-Oncolytic Therapeutics Are Effective In Cancer Treatment?
Abstract:
Oncolytic virus (OVs) therapy has emerged as a promising modality in cancer immunotherapy, attracting growing attention for its multifaceted mechanisms of tumor elimination. However, its efficacy as a monotherapy remains constrained by physiological barriers, limited delivery routes, and suboptimal immune activation. Phototherapy, an innovative and rapidly advancing cancer treatment technology, can mitigate these limitations when used in conjunction with OVs, enhancing viral delivery, amplifying tumor destruction, and boosting antitumor immune responses. This review provides the first comprehensive analysis of synergistic integration of OVs with both photodynamic therapy (PDT) and photothermal therapy (PTT). It also explores their applications in optical imaging-guided diagnosis and optogenetically controlled delivery. Furthermore, it discusses emerging strategies involving biomimetic virus or viroid-based vectors in conjunction with phototherapy, and delves into the immunomodulatory mechanisms of this combinatorial approach. While promising in preclinical models, these combined strategies are still largely in early-stage research. Challenges such as limited light penetration, delivery efficiency, and safety concerns remain to be addressed for clinical translation. Consequently, the integration of OV therapy and phototherapy represents a compelling strategy in cancer treatment, offering significant promise for advancing precision oncology and next-generation immunotherapies.
4.
Optogenetic enzymes: A deep dive into design and impact.
Abstract:
Optogenetically regulated enzymes offer unprecedented spatiotemporal control over protein activity, intermolecular interactions, and intracellular signaling. Many design strategies have been developed for their fabrication based on the principles of intrinsic allostery, oligomerization or 'split' status, intracellular compartmentalization, and steric hindrance. In addition to employing photosensory domains as part of the traditional optogenetic toolset, the specificity of effector domains has also been leveraged for endogenous applications. Here, we discuss the dynamics of light activation while providing a bird's eye view of the crafting approaches, targets, and impact of optogenetic enzymes in orchestrating cellular functions, as well as the bottlenecks and an outlook into the future.
5.
Optogenetics to biomolecular phase separation in neurodegenerative diseases.
Abstract:
Neurodegenerative diseases involve toxic protein aggregation. Recent evidence suggests that biomolecular phase separation, a process in which proteins and nucleic acids form dynamic, liquid-like condensates, plays a key role in this aggregation. Optogenetics, originally developed to control neuronal activity with light, has emerged as a powerful tool to investigate phase separation in living systems. This is achieved by fusing disease-associated proteins to light-sensitive oligomerization domains, enabling researchers to induce or reverse condensate formation with precise spatial and temporal control. This review highlights how optogenetic systems such as OptoDroplet are being used to dissect the mechanisms of neurodegenerative disease. We examine how these tools have been applied in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, and Huntington's disease. These studies implicate small oligomeric aggregates as key drivers of toxicity and highlight new opportunities for therapeutic screening. Finally, we discuss advances in light-controlled dissolution of condensates and future directions for applying optogenetics to combat neurodegeneration. By enabling precise, dynamic control of protein phase behavior in living systems, optogenetic approaches provide a powerful framework for elucidating disease mechanisms and informing the development of targeted therapies.
6.
Nanobody-Based Light-Controllable Systems for Investigating Biology.
Abstract:
Nanobodies, the camelid-derived single-chain variable domain of heavy-chain-only antibodies, are compact in size and exhibit high binding affinity and specificity to their binding partners. As innovative antibody modalities, nanobodies have garnered significant attention in medicine and biological research. To achieve higher spatiotemporal precision, nanobody-based light-controlled systems-such as photobody, optobody, photoactivatable nanobody conjugate inducers of dimerization, and others-have been developed. These systems enable optical control of biological processes while leveraging the advantages of nanobodies as a binding moiety. This concept, summarizes nanobody-based photoregulated systems for investigating biology through light, highlights their advantages and potential limitations, and discusses future directions in this emerging research area.
7.
Empowering bacteria with light: Optogenetically engineered bacteria for light-controlled disease theranostics and regulation.
Abstract:
Bacterial therapy has emerged as a promising approach for disease treatment due to its environmental sensitivity, immunogenicity, and modifiability. However, the clinical application of engineered bacteria is limited by differences of expression levels in patients and possible off-targeting. Optogenetics, which combines optics and genetics, offers key advantages such as remote controllability, non-invasiveness, and precise spatiotemporal control. By utilizing optogenetic tools, the behavior of engineered bacteria can be finely regulated, enabling on-demand control of the dosage and location of their therapeutic products. In this review, we highlight the latest advancements in the optogenetic engineering of bacteria for light-controlled disease theranostics and therapeutic regulation. By constructing a three-dimensional analytical framework of “sense-produce-apply”, we begin by discussing the key components of bacterial optogenetic systems, categorizing them based on their photosensitive protein response to blue, green, and red light. Next, we introduce innovative light-producing tools that extend beyond traditional light sources. Then, special emphasis is placed on the biomedical applications of optogenetically engineered bacteria in treating diseases such as cancer, intestinal inflammation and systemic disease regulation. Finally, we address the challenges and future prospects of bacterial optogenetics, outlining potential directions for enhancing the safety and efficacy of light-controlled bacterial therapies. This review aims to provide insights and strategies for researchers working to advance the application of optogenetically engineered bacteria in drug delivery, precision medicine and therapeutic regulation.
8.
Enhanced or reversible RNA N6-methyladenosine editing by red/far-red light induction.
-
Tang, H
-
Han, S
-
Jie, Y
-
Jiang, X
-
Zhang, Y
-
Peng, J
-
Wang, F
-
Li, X
-
Zhou, X
-
Jiang, W
-
Weng, X
Abstract:
The RNA N6-methyladenosine (m6A) modification is a critical regulator of various biological processes, but precise and dynamic control of m6A remains a challenge. In this work, we present a red/far-red light-inducible m6A editing system that enables efficient and reversible modulation of m6A levels with minimal off-target effects. By engineering the CRISPR dCas13 protein and sgRNA with two pairs of light-inducible heterodimerizing proteins, ΔphyA/FHY1 and Bphp1/PspR2, we achieved targeted recruitment of m6A effectors. This system significantly enhances m6A writing efficiency and allows dynamic regulation of m6A deposition and removal on specific transcripts, such as SOX2 and ACTB. Notably, reversible m6A editing was achieved through cyclic modulation at a single target site, demonstrating the ability to influence mRNA expression and modulate the differentiation state of human embryonic stem cells. This optogenetic platform offers a precise, versatile tool for cyclic and reversible m6A regulation, with broad implications for understanding RNA biology and its potential applications in research and medicine.
9.
Protein design accelerates the development and application of optogenetic tools.
Abstract:
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
10.
Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.
Abstract:
As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers—chemical, light, temperature, and pH—this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
11.
Illuminating the future of food microbial control: From optical tools to Optogenetic tools.
Abstract:
Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
12.
Optogenetic control of Corynebacterium glutamicum gene expression.
Abstract:
Corynebacterium glutamicum is a key industrial workhorse for producing amino acids and high-value chemicals. Balancing metabolic flow between cell growth and product synthesis is crucial for enhancing production efficiency. Developing dynamic, broadly applicable, and minimally toxic gene regulation tools for C. glutamicum remains challenging, as optogenetic tools ideal for dynamic regulatory strategies have not yet been developed. This study introduces an advanced light-controlled gene expression system using light-controlled RNA-binding proteins (RBP), a first for Corynebacterium glutamicum. We established a gene expression regulation system, 'LightOnC.glu', utilizing the light-controlled RBP to construct light-controlled transcription factors in C. glutamicum. Simultaneously, we developed a high-performance light-controlled gene interference system using CRISPR/Cpf1 tools. The metabolic flow in the synthesis network was designed to enable the production of chitin oligosaccharides (CHOSs) and chondroitin sulphate oligosaccharides A (CSA) for the first time in C. glutamicum. Additionally, a light-controlled bioreactor was constructed, achieving a CHOSs production concentration of 6.2 g/L, the highest titer recorded for CHOSs biosynthesis to date. Herein, we have established a programmable light-responsive genetic circuit in C. glutamicum, advancing the theory of dynamic regulation based on light signaling. This breakthrough has potential applications in optimizing metabolic modules in other chassis cells and synthesizing other compounds.
13.
Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.
-
Kasatkina, LA
-
Ma, C
-
Sheng, H
-
Lowerison, M
-
Menozzi, L
-
Baloban, M
-
Tang, Y
-
Xu, Y
-
Humayun, L
-
Vu, T
-
Song, P
-
Yao, J
-
Verkhusha, VV
Abstract:
We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
14.
Programming mammalian cell behaviors by physical cues.
Abstract:
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
15.
Optogenetics in pancreatic islets: Actuators and effects.
Abstract:
The Islets of Langerhans reside within the endocrine pancreas as highly vascularised micro-organs that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include calcium (Ca2+) waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Very recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbing islet function with near physiological spatio-temporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus (DM).
16.
Nano-optogenetics for Disease Therapies.
Abstract:
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
17.
Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals.
Abstract:
At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.
18.
Opticool: Cutting-edge transgenic optical tools.
Abstract:
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
19.
Darkness inhibits autokinase activity of bacterial bathy phytochromes.
Abstract:
Bathy phytochromes are a subclass of bacterial biliprotein photoreceptors that carry a biliverdin IXα chromophore. In contrast to prototypical phytochromes that adopt a red-light-absorbing Pr ground state, the far-red light-absorbing Pfr-form is the thermally stable ground state of bathy phytochromes. Although the photobiology of bacterial phytochromes has been extensively studied since their discovery in the late 1990s, our understanding of the signal transduction process to the connected transmitter domains, which are often histidine kinases, remains insufficient. Initiated by the analysis of the bathy phytochrome PaBphP from Pseudomonas aeruginosa, we performed a systematic analysis of five different bathy phytochromes with the aim to derive a general statement on the correlation of photostate and autokinase output. While all proteins adopt different Pr/Pfr-fractions in response to red, blue, and far-red light, only darkness leads to a pure or highly enriched Pfr-form, directly correlated with the lowest level of autokinase activity. Using this information, we developed a method to quantitatively correlate the autokinase activity of phytochrome samples with well-defined stationary Pr/Pfr-fractions. We demonstrate that the off-state of the phytochromes is the Pfr-form and that different Pr/Pfr-fractions enable the organisms to fine-tune their kinase output in response to a certain light environment. Furthermore, the output response is regulated by the rate of dark reversion, which differs significantly from 5 s to 50 min half-life. Overall, our study indicates that bathy phytochromes function as sensors of light and darkness, rather than red and far-red light, as originally postulated.
20.
Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.
Abstract:
[This corrects the article DOI: 10.1002/mco2.226.].
21.
Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems.
Abstract:
CRISPR-Cas effectors are powerful tools for genome and transcriptome targeting and editing. Naturally, these protein-RNA complexes are part of the microbial innate immune system, which emerged from the evolutionary arms race between microbes and phages. This coevolution has also given rise to so-called anti-CRISPR (Acr) proteins that counteract the CRISPR-Cas adaptive immunity. Acrs constitutively block cognate CRISPR-Cas effectors, e.g., by interfering with guide RNA binding, target DNA/RNA recognition, or target cleavage. In addition to their important role in microbiology and evolution, Acrs have recently gained particular attention for being useful tools and switches to regulate or fine-tune the activity of CRISPR-Cas effectors. Due to their commonly small size, high inhibition potency, and structural and mechanistic versatility, Acrs offer a wide range of potential applications for controlling CRISPR effectors in heterologous systems, including mammalian cells.Here, we review the diverse applications of Acrs in mammalian cells and organisms and discuss the underlying engineering strategies. These applications include (i) persistent blockage of CRISPR-Cas function to create write-protected cells, (ii) reduction of CRISPR-Cas off-target editing, (iii) focusing CRISPR-Cas activity to specific cell types and tissues, (iv) spatiotemporal control of CRISPR effectors based on engineered, opto-, or chemogenetic Acrs, and (v) the use of Acrs for selective binding and detection of CRISPR-Cas effectors in complex samples. We will also highlight potential future applications of Acrs in a biomedical context and point out present challenges that need to be overcome on the way.
22.
Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications.
Abstract:
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
23.
Selective induction of programmed cell death using synthetic biology tools.
Abstract:
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
24.
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.
Abstract:
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
25.
Recent advances in cellular optogenetics for photomedicine.
Abstract:
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.