Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 214 results

Light-regulated voltage-gated potassium channels for acute interrogation of channel function in neurons and behavior.

blue VfAU1-LOV CHO-K1 Cos-7 HEK293 Jurkat mouse CGN Xenopus oocytes Neuronal activity control
PLoS ONE, 23 Mar 2021 DOI: 10.1371/journal.pone.0248688 Link to full text
Abstract: Voltage-gated potassium (Kv) channels regulate the membrane potential and conductance of excitable cells to control the firing rate and waveform of action potentials. Even though Kv channels have been intensely studied for over 70 year, surprisingly little is known about how specific channels expressed in various neurons and their functional properties impact neuronal network activity and behavior in vivo. Although many in vivo genetic manipulations of ion channels have been tried, interpretation of these results is complicated by powerful homeostatic plasticity mechanisms that act to maintain function following perturbations in excitability. To better understand how Kv channels shape network function and behavior, we have developed a novel optogenetic technology to acutely regulate Kv channel expression with light by fusing the light-sensitive LOV domain of Vaucheria frigida Aureochrome 1 to the N-terminus of the Kv1 subunit protein to make an Opto-Kv1 channel. Recording of Opto-Kv1 channels expressed in Xenopus oocytes, mammalian cells, and neurons show that blue light strongly induces the current expression of Opto-Kv1 channels in all systems tested. We also find that an Opto-Kv1 construct containing a dominant-negative pore mutation (Opto-Kv1(V400D)) can be used to down-regulate Kv1 currents in a blue light-dependent manner. Finally, to determine whether Opto-Kv1 channels can elicit light-dependent behavioral effect in vivo, we targeted Opto-Kv1 (V400D) expression to Kv1.3-expressing mitral cells of the olfactory bulb in mice. Exposure of the bulb to blue light for 2-3 hours produced a significant increase in sensitivity to novel odors after initial habituation to a similar odor, comparable to behavioral changes seen in Kv1.3 knockout animals. In summary, we have developed novel photoactivatable Kv channels that provide new ways to interrogate neural circuits in vivo and to examine the roles of normal and disease-causing mutant Kv channels in brain function and behavior.

Optogenetic manipulation of YAP cellular localisation and function.

blue AsLOV2 HEK293T HFF-1 MKN28 zebrafish in vivo Signaling cascade control
bioRxiv, 19 Mar 2021 DOI: 10.1101/2021.03.19.436118 Link to full text
Abstract: YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attached a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression, cell proliferation, and anchorage-independent growth. Similarly, we can utilise optoYAP in zebrafish embryos to modulate target genes. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.

Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation.

blue CRY2/CRY2 HEK293T Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Int J Mol Sci, 12 Mar 2021 DOI: 10.3390/ijms22062909 Link to full text
Abstract: Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.

A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.

blue AsLOV2 CRY2/CIB1 Magnets HEK293 S. cerevisiae Transgene expression
Elife, 23 Feb 2021 DOI: 10.7554/elife.61268 Link to full text
Abstract: Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light, without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of β-carotene with light, and in human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.

Photo-dependent membrane-less organelles formed from plant phyB and PIF6 proteins in mammalian cells.

red PhyB/PIF6 HEK293
Int J Biol Macromol, 11 Feb 2021 DOI: 10.1016/j.ijbiomac.2021.02.075 Link to full text
Abstract: Plant photobodies are the membrane-less organelles (MLOs) that can be generated by protein-protein interactions between active form of phytochrome B (phyB) and phytochrome-interacting factors (PIFs). These organelles regulate plant photomorphogenesis. In this study, we developed two chimeric proteins with fluorescent proteins, phyB fused to EGFP and PIF6 fused to mCherry, and investigated their exogenous expression in mammalian cells by confocal fluorescence microscopy. Results showed that irradiation with diffused 630-nm light induced formation and subsequent increase in sizes of the MLOs. The assembly and disassembly of the photo-inducible MLOs in the mammalian cell cytoplasm obeyed the laws inherent in the concentration-dependent phase separation of biopolymers. The sizes of MLOs formed from phyB and PIF6 in mammalian cells corresponded to the sizes of the so-called "early" photobodies in plant cells. These results suggested that the first step for the formation of plant photobodies might be based on the light-dependent liquid-liquid phase separation of PIFs and other proteins that can specifically interact with the active form of phyB. The developed chimeric proteins in principle can be used to control the assembly and disassembly of photo-inducible MLOs, and thereby to regulate various intracellular processes in mammalian cells.

Blue Light‐Operated CRISPR/Cas13b‐Mediated mRNA Knockdown (Lockdown).

blue AsLOV2 EL222 TULIP CHO-K1 HEK293T Nucleic acid editing
Adv Biol, 11 Feb 2021 DOI: 10.1002/adbi.202000307 Link to full text
Abstract: The introduction of optogenetics into cell biology has furnished systems to control gene expression at the transcriptional and protein stability level, with a high degree of spatial, temporal, and dynamic light‐regulation capabilities. Strategies to downregulate RNA currently rely on RNA interference and CRISPR/Cas‐related methods. However, these approaches lack the key characteristics and advantages provided by optical control. “Lockdown” introduces optical control of RNA levels utilizing a blue light‐dependent switch to induce expression of CRISPR/Cas13b, which mediates sequence‐specific mRNA knockdown. Combining Lockdown with optogenetic tools to repress gene‐expression and induce protein destabilization with blue light yields efficient triple‐controlled downregulation of target proteins. Implementing Lockdown to degrade endogenous mRNA levels of the cyclin‐dependent kinase 1 (hCdk1) leads to blue light‐induced G2/M cell cycle arrest and inhibition of cell growth in mammalian cells.

Optogenetic Control of Myocardin‐Related Transcription Factor A Subcellular Localization and Transcriptional Activity Steers Membrane Blebbing and Invasive Cancer Cell Motility.

blue AsLOV2 HEK293 HeLa NIH/3T3 Endogenous gene expression
Adv Biol, 8 Feb 2021 DOI: 10.1002/adbi.202000208 Link to full text
Abstract: The myocardin‐related transcription factor A (MRTF‐A) controls the transcriptional activity of the serum response factor (SRF) in a tightly controlled actin‐dependent manner. In turn, MRTF‐A is crucial for many actin‐dependent processes including adhesion, migration, and contractility and has emerged as novel targets for anti‐tumor strategies. MRTF‐A rapidly shuttles between cytoplasmic and nuclear compartment via dynamic actin interactions within its N‐terminal RPEL domain. Here, optogenetics is used to spatiotemporally control MRTF‐A nuclear localization by blue light using the light‐oxygen‐voltage‐sensing domain 2‐domain based system LEXY (light‐inducible nuclear export system). It is found that light‐regulated nuclear export of MRTF‐A occurs within 10–20 min. Importantly, MRTF‐A‐LEXY shuttling is independent of perturbations of actin dynamics. Furthermore, light‐regulation of MRTF‐A‐LEXY is reversible and repeatable for several cycles of illumination and its subcellular localization correlates with SRF transcriptional activity. As a consequence, optogenetic control of MRTF‐A subcellular localization determines subsequent cytoskeletal dynamics such as non‐apoptotic plasma membrane blebbing as well as invasive tumor‐cell migration through 3D collagen matrix. This data demonstrate robust optogenetic regulation of MRTF as a powerful tool to control SRF‐dependent transcription as well as cell motile behavior.

Optical regulation of endogenous RhoA reveals switching of cellular responses by signal amplitude.

blue cyan CRY2/CIB1 Dronpa145K/N pdDronpa1 TULIP HEK293A rat hippocampal neurons U-87 MG Endogenous gene expression
bioRxiv, 7 Feb 2021 DOI: 10.1101/2021.02.05.430013 Link to full text
Abstract: Precise control of the timing and amplitude of protein activity in living cells can explain how cells compute responses to complex biochemical stimuli. The small GTPase RhoA can promote either focal adhesion (FA) growth or cell edge retraction, but how a cell chooses between these opposite outcomes is poorly understood. Here, we developed a photoswitchable RhoA guanine exchange factor (psRhoGEF) to obtain precise optical control of endogenous RhoA activity. We find that low levels of RhoA activation by psRhoGEF induces edge retraction and FA disassembly, while high levels of RhoA activation induces both FA growth and disassembly. We observed that mDia-induced Src activation at FAs occurs preferentially at lower levels of RhoA activation. Strikingly, inhibition of Src causes a switch from FA disassembly to growth. Thus, rheostatic control of RhoA activation reveals how cells use signal amplitude and biochemical context to select between alternative responses to a single biochemical signal.

Single-component optogenetic tools for inducible RhoA GTPase signaling.

blue BcLOV4 HEK293T Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Feb 2021 DOI: 10.1101/2021.02.01.429147 Link to full text
Abstract: We created optogenetic tools to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activating GEF effectors, were fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these effectors induced potent contractile signaling sufficient to separate adherens junctions in response to as little as one pulse of blue light. Cytoskeletal morphology changes were dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation induced YAP nuclear localization within minutes and subsequent mechanotransduction, verified by YAP-TEAD transcriptional activity. These single-component tools, which do not require protein binding partners, offer spatiotemporally precise control over RhoA signaling that will advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.

A CRISPR-Cas9-Based Near-Infrared Upconversion-Activated DNA Methylation Editing System.

blue CRY2/CIB1 HEK293T mouse in vivo TPC-1 Nucleic acid editing
ACS Appl Mater Interfaces, 1 Feb 2021 DOI: 10.1021/acsami.0c21223 Link to full text
Abstract: DNA methylation is a kind of a crucial epigenetic marker orchestrating gene expression, molecular function, and cellular phenotype. However, manipulating the methylation status of specific genes remains challenging. Here, a clustered regularly interspaced palindromic repeats-Cas9-based near-infrared upconversion-activated DNA methylation editing system (CNAMS) was designed for the optogenetic editing of DNA methylation. The fusion proteins of photosensitive CRY2PHR, the catalytic domain of DNMT3A or TET1, and the fusion proteins for CIBN and catalytically inactive Cas9 (dCas9) were engineered. The CNAMS could control DNA methylation editing in response to blue light, thus allowing methylation editing in a spatiotemporal manner. Furthermore, after combination with upconversion nanoparticles, the spectral sensitivity of DNA methylation editing was extended from the blue light to near-infrared (NIR) light, providing the possibility for remote DNA methylation editing. These results demonstrated a meaningful step forward toward realizing the specific editing of DNA methylation, suggesting the wide utility of our CNAMS for functional studies on epigenetic regulation and potential therapeutic strategies for related diseases.

A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.

blue CRY2/CIB1 LOVTRAP VVD A549 Cos-7 HEK293 HEK293T HeLa mouse in vivo NCI-H1299 PC-3 U-87 MG Transgene expression
Nat Commun, 27 Jan 2021 DOI: 10.1038/s41467-021-20913-1 Link to full text
Abstract: Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.

TopBP1 assembles nuclear condensates to switch on ATR signaling.

blue CRY2/CRY2 HEK293 Signaling cascade control
Mol Cell, 16 Jan 2021 DOI: 10.1016/j.molcel.2020.12.049 Link to full text
Abstract: ATR checkpoint signaling is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator of ATR, self-assembles extensively to yield micrometer-sized condensates. These opto-TopBP1 condensates are functional entities organized in tightly packed clusters of spherical nano-particles. TopBP1 condensates are reversible, occasionally fuse, and co-localize with TopBP1 partner proteins. We provide evidence that TopBP1 condensation is a molecular switch that amplifies ATR activity to phosphorylate checkpoint kinase 1 (Chk1) and slow down replication forks. Single amino acid substitutions of key residues in the intrinsically disordered ATR activation domain disrupt TopBP1 condensation and consequently ATR/Chk1 signaling. In physiologic salt concentration and pH, purified TopBP1 undergoes liquid-liquid phase separation in vitro. We propose that the actuation mechanism of ATR signaling is the assembly of TopBP1 condensates driven by highly regulated multivalent and cooperative interactions.

Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.

blue CRY2/CIB1 iLID HEK293T HeLa hTERT RPE-1 MDCK Signaling cascade control
J Biol Chem, 13 Jan 2021 DOI: 10.1016/j.jbc.2021.100290 Link to full text
Abstract: Rho/Ras family small GTPases are known to regulate numerous cellular processes, including cytoskeletal reorganization, cell proliferation, and cell differentiation. These processes are also controlled by Ca2+, and consequently, crosstalk between these signals is considered likely. However, systematic quantitative evaluation has not yet been reported. To fill this gap, we constructed optogenetic tools to control the activity of small GTPases (RhoA, Rac1, Cdc42, Ras, Rap, and Ral) using an improved light-inducible dimer system (iLID). We characterized these optogenetic tools with genetically encoded red fluorescence intensity-based small GTPase biosensors and confirmed these optogenetic tools' specificities. Using these optogenetic tools, we investigated calcium mobilization immediately after small GTPase activation. Unexpectedly, we found that a transient intracellular calcium elevation was specifically induced by RhoA activation in RPE1 and HeLa cells. RhoA activation also induced transient intracellular calcium elevation in MDCK and HEK293T cells, suggesting that generally RhoA induces calcium signaling. Interestingly, the molecular mechanisms linking RhoA activation to calcium increases were shown to be different among the different cell types: In RPE1 and HeLa cells, RhoA activated phospholipase C epsilon (PLCε) at the plasma membrane, which in turn induced Ca2+ release from the endoplasmic reticulum (ER). The RhoA-PLCε axis induced calcium-dependent NFAT nuclear translocation, suggesting it does activate intracellular calcium signaling. Conversely, in MDCK and HEK293T cells, RhoA-ROCK-myosin II axis induced the calcium transients. These data suggest universal coordination of RhoA and calcium signaling in cellular processes, such as cellular contraction and gene expression.

Endosomal cAMP production broadly impacts the cellular phosphoproteome.

blue bPAC (BlaC) HEK293 Signaling cascade control Immediate control of second messengers
bioRxiv, 6 Jan 2021 DOI: 10.1101/2021.01.06.425636 Link to full text
Abstract: Endosomal signaling from G protein-coupled receptors (GPCRs) has emerged as a novel paradigm with important pharmacological and physiological implications. Yet, our knowledge of the functional consequences of activating intracellular GPCRs is incomplete. To address this gap, we combined an optogenetic approach for site-specific generation of the prototypical second messenger cyclic AMP (cAMP) with unbiased mass spectrometry-based analysis of phosphoproteomic effects. We identified 218 unique, high-confidence sites whose phosphorylation is either increased or decreased in response to cAMP production. We next determined that cAMP produced from endosomes led to more robust changes in phosphorylation than cAMP produced from the plasma membrane. Remarkably, this was true for the entire repertoire of identified targets, and irrespective of their annotated sub-cellular localization. Furthermore, we identified a particularly strong endosome bias for a subset of proteins that are dephosphorylated in response to cAMP. Through bioinformatics analysis, we established these targets as putative substrates for protein phosphatase 2A (PP2A), and we propose compartmentalized activation of PP2A-B56δ as the likely underlying mechanism. Altogether, our study extends the concept that endosomal signaling is a significant functional contributor to cellular responsiveness by establishing a unique role for localized cAMP production in defining categorically distinct phosphoresponses.

A Light-Inducible Split-dCas9 System for Inhibiting the Progression of Bladder Cancer Cells by Activating p53 and E-cadherin.

blue CRY2/CIB1 5637 cells HEK293T T24 Nucleic acid editing
Front Mol Biosci, 5 Jan 2021 DOI: 10.3389/fmolb.2020.627848 Link to full text
Abstract: Optogenetic systems have been increasingly investigated in the field of biomedicine. Previous studies had found the inhibitory effect of the light-inducible genetic circuits on cancer cell growth. In our study, we applied an AND logic gates to the light-inducible genetic circuits to inhibit the cancer cells more specifically. The circuit would only be activated in the presence of both the human telomerase reverse transcriptase (hTERT) and the human uroplakin II (hUPII) promoter. The activated logic gate led to the expression of the p53 or E-cadherin protein, which could inhibit the biological function of tumor cells. In addition, we split the dCas9 protein to reduce the size of the synthetic circuit compared to the full-length dCas9. This light-inducible system provides a potential therapeutic strategy for future bladder cancer.

Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice.

blue red CRY2/CIB1 CRY2/CRY2 PhyB/PIF6 HEK293 mouse in vivo U-2 OS Transgene expression
Sci Adv, 1 Jan 2021 DOI: 10.1126/sciadv.abd3568 Link to full text
Abstract: Light-inducible gene switches represent a key strategy for the precise manipulation of cellular events in fundamental and applied research. However, the performance of widely used gene switches is limited due to low tissue penetrance and possible phototoxicity of the light stimulus. To overcome these limitations, we engineer optogenetic synthetic transcription factors to undergo liquid-liquid phase separation in close spatial proximity to promoters. Phase separation of constitutive and optogenetic synthetic transcription factors was achieved by incorporation of intrinsically disordered regions. Supported by a quantitative mathematical model, we demonstrate that engineered transcription factor droplets form at target promoters and increase gene expression up to fivefold. This increase in performance was observed in multiple mammalian cells lines as well as in mice following in situ transfection. The results of this work suggest that the introduction of intrinsically disordered domains is a simple yet effective means to boost synthetic transcription factor activity.

Engineering Supramolecular Organizing Centers for Optogenetic Control of Innate Immune Responses.

blue CRY2/CRY2 LOVTRAP HEK293T HeLa RAW264.7 THP-1
Adv Biol, 30 Dec 2020 DOI: 10.1002/adbi.202000147 Link to full text
Abstract: The spatiotemporal organization of oligomeric protein complexes, such as the supramolecular organizing centers (SMOCs) made of MyDDosome and MAVSome, is essential for transcriptional activation of host inflammatory responses and immunometabolism. Light‐inducible assembly of MyDDosome and MAVSome is presented herein to induce activation of nuclear factor‐kB and type‐I interferons. Engineering of SMOCs and the downstream transcription factor permits programmable and customized innate immune operations in a light‐dependent manner. These synthetic molecular tools will likely enable optical and user‐defined modulation of innate immunity at a high spatiotemporal resolution to facilitate mechanistic studies of distinct modes of innate immune activations and potential intervention of immune disorders and cancer.

Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse.

blue red CRY2/CIB1 Magnets PhyB/PIF3 VVD HEK293T HeLa HEp-2 mouse in vivo SH-SY5Y Nucleic acid editing
Proc Natl Acad Sci U S A, 14 Dec 2020 DOI: 10.1073/pnas.2003991117 Link to full text
Abstract: Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.

Optogenetic inhibition and activation of Rac and Rap1 using a modified iLID system.

blue iLID HEK293T HeLa
bioRxiv, 11 Dec 2020 DOI: 10.1101/2020.12.11.421990 Link to full text
Abstract: The small GTPases Rac1 and Rap1 can fulfill multiple cellular functions because their activation kinetics and localization are precisely controlled. To probe the role of their spatio-temporal dynamics, we generated optogenetic tools that activate or inhibit endogenous Rac and Rap1 in living cells. An improved version of the light-induced dimerization (iLID) system [1] was used to control plasma membrane localization of protein domains that specifically activate or inactivate Rap1 and Rac (Tiam1 and Chimerin for Rac, RasGRP2 and Rap1GAP for Rap1 [2–5]). Irradiation yielded a 50-230% increase in the concentration of these domains at the membrane, leading to effects on cell morphodynamics consistent with the known roles of Rac1 and Rap1.

Design of smart antibody mimetics with photosensitive switches.

blue AsLOV2 HEK293T HeLa Transgene expression Nucleic acid editing
bioRxiv, 4 Dec 2020 DOI: 10.1101/2020.12.03.410936 Link to full text
Abstract: As two prominent examples of intracellular single-domain antibodies or antibody mimetics derived from synthetic protein scaffolds, monobodies and nanobodies are gaining wide applications in cell biology, structural biology, synthetic immunology, and theranostics. We introduce herein a generally-applicable method to engineer light-controllable monobodies and nanobodies, designated as moonbody and sunbody, respectively. These engineered antibody-like modular domains enable rapid and reversible antibody-antigen recognition by utilizing light. By paralleled insertion of two LOV2 modules into a single sunbody and the use of bivalent sunbodies, we substantially enhance the range of dynamic changes of photo-switchable sunbodies. Furthermore, we demonstrate the use of moonbodies or sunbodies to precisely control protein degradation, gene transcription, and base editing by harnessing the power of light.

Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity.

red DrBphP HEK293T HeLa mouse in vivo S. cerevisiae
ACS Synth Biol, 12 Nov 2020 DOI: 10.1021/acssynbio.0c00397 Link to full text
Abstract: Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.

Quantifying signal persistence in the T cell signaling network using an optically controllable antigen receptor.

blue LOVTRAP HEK293T Jurkat Signaling cascade control
bioRxiv, 30 Oct 2020 DOI: 10.1101/2020.10.30.362194 Link to full text
Abstract: T cells discriminate between healthy and infected cells with remarkable sensitivity when mounting an immune response. It has been hypothesized that this efficient detection requires combining signals from discrete antigen-presenting cell interactions into a more potent response, requiring T cells to maintain a ‘memory’ of previous encounters. To quantify the magnitude of this phenomenon, we have developed an antigen receptor that is both optically and chemically tunable, providing control over the initiation, duration, and intensity of intracellular T-cell signaling within physiological cell conjugates. We observe very limited persistence within the T cell intracellular network on disruption of receptor input, with signals dissipating entirely in ~15 minutes, and directly confirm that sustained proximal receptor signaling is required to maintain active gene transcription. Our data suggests that T cells are largely incapable of integrating discrete antigen receptor signals but instead simply accumulate the output of gene expression. By engineering optical control in a clinically relevant chimeric antigen receptor, we show that this limited signal persistence can be exploited to increase the activation of primary T cells by ~3-fold by using pulsatile stimulation. Our results are likely to apply more generally to the signaling dynamics of other cellular networks.

Optogenetic Control of the BMP Signaling Pathway.

blue VfAU1-LOV HEK293T hESCs SW 1353 T/C28a2 Signaling cascade control
ACS Synth Biol, 21 Oct 2020 DOI: 10.1021/acssynbio.0c00315 Link to full text
Abstract: Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.

Multichromatic Control of Signaling Pathways in Mammalian Cells.

blue red CRY2/CIB1 PhyB/PIF6 HEK293 Signaling cascade control Multichromatic
Adv Biosyst, 12 Oct 2020 DOI: 10.1002/adbi.202000196 Link to full text
Abstract: The precise control of signaling proteins is a prerequisite to decipher the complexity of the signaling network and to reveal and to study pathways involved in regulating cellular metabolism and gene expression. Optogenetic approaches play an emerging role as they enable the spatiotemporal control of signaling processes. Herein, a multichromatic system is developed by combining the blue light cryptochrome 2 system and the red/far-red light phytochrome B system. The use of three wavelengths allows the orthogonal control of the RAF/ERK and the AKT signaling pathway. Continuous exposure of cells to blue light leads to activation of AKT while simultaneous pulses of red and far-red light enable the modulation of ERK signaling in cells with constantly active AKT signaling. The optimized, orthogonal multichromatic system presented here is a valuable tool to better understand the fine grained and intricate processes involved in cell fate decisions.

Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo HEK293T PC-12 Signaling cascade control
Elife, 6 Oct 2020 DOI: 10.7554/elife.57395 Link to full text
Abstract: Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.
Submit a new publication to our database