Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results

Optogenetic manipulation of YAP cellular localisation and function.

blue AsLOV2 HEK293T HFF-1 MKN28 zebrafish in vivo Signaling cascade control
bioRxiv, 19 Mar 2021 DOI: 10.1101/2021.03.19.436118 Link to full text
Abstract: YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attached a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression, cell proliferation, and anchorage-independent growth. Similarly, we can utilise optoYAP in zebrafish embryos to modulate target genes. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.

Optogenetic control of cell morphogenesis on protein micropatterns.

blue AsLOV2 HFF-1 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 4 Mar 2019 DOI: 10.1101/563353 Link to full text
Abstract: Cell morphogenesis is critical for embryonic development, tissue formation, and wound healing. Our ability to manipulate endogenous mechanisms to control cell shape, however, remains limited. Here we combined surface micropatterning of adhesion molecules with optogenetic activation of intracellular signaling pathways to control the nature and morphology of cellular protrusions. We employed geometry-dependent pre-organization of cytoskeletal structures together with acute activation of signaling pathways that control actin assembly to create a tool capable of generating membrane protrusions at defined cellular locations. Further, we find that the size of microfabricated patterns of adhesion molecules influences the molecular mechanism of cell protrusion: larger patterns enable cells to create actin-filled lamellipodia while smaller patterns promote formation of spherical blebs. Optogenetic perturbation of signaling pathways in these cells changes the size of blebs and convert them into lamellipodia. Our results demonstrate how the coordinated manipulation of adhesion geometry and cytoskeletal dynamics can be used to control membrane protrusion and cell morphogenesis.
Submit a new publication to our database