Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 6 of 6 results

Endothelial cell invasiveness is controlled by myosin IIA-dependent inhibition of Arp2/3 activity.

blue iLID HUVEC Control of cytoskeleton / cell motility / cell shape
bioRxiv, 8 Sep 2020 DOI: 10.1101/2020.09.08.287466 Link to full text
Abstract: Sprouting angiogenesis is fundamental for development and contributes to multiple diseases, including cancer, diabetic retinopathy and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on the mechanisms that endothelial tip cells use to invade into tissues. Here, we prove that endothelial tip cells use long lamellipodia projections (LLPs) as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that LLPs and filopodia protrusions are balanced by myosin-IIA (MIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of MIIA promotes excessive LLPs formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents LLPs development and leads to excessive filopodia formation. We further show that MIIA inhibits Rac1-dependent activation of Arp2/3, by regulating the maturation state of focal adhesions. Our discoveries establish the first comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way towards new strategies to block invasive tip cells during sprouting angiogenesis.

Photoactivatable oncolytic adenovirus for optogenetic cancer therapy.

blue VVD A549 Hep G2 human IPSCs HUVEC mouse in vivo NCI-H1299
Cell Death Dis, 23 Jul 2020 DOI: 10.1038/s41419-020-02782-6 Link to full text
Abstract: Virotherapy using oncolytic adenovirus is an effective anticancer strategy. However, the tumor selectivity of oncolytic adenoviruses is not enough high. To develop oncolytic adenovirus with a low risk of off-tumor toxicity, we constructed a photoactivatable oncolytic adenovirus (paOAd). In response to blue light irradiation, the expression of adenoviral E1 genes, which are necessary for adenoviral replication, is induced and replication of this adenovirus occurs. In vitro, efficient lysis of various human cancer cell lines was observed by paOAd infection followed by blue light irradiation. Importantly, there was no off-tumor toxicity unless the cells were irradiated by blue light. In vivo, tumor growth in a subcutaneous tumor model and a mouse model of liver cancer was significantly inhibited by paOAd infection followed by blue light irradiation. In addition, paOAd also showed a therapeutic effect on cancer stem cells. These results suggest that paOAd is useful as a safe and therapeutically effective cancer therapy.

Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

red PhyB/PIF6 HEK293T HeLa hMSCs HUVEC in vitro NIH/3T3
ACS Nano, 30 Nov 2015 DOI: 10.1021/acsnano.5b05558 Link to full text
Abstract: Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts.

Optogenetic control of endogenous Ca(2+) channels in vivo.

blue AsLOV2 CRY2/CRY2 Cos-7 HEK293 HeLa hESCs HUVEC mouse astrocytes mouse hippocampal slices mouse in vivo NIH/3T3 primary mouse hippocampal neurons zebrafish in vivo Immediate control of second messengers
Nat Biotechnol, 14 Sep 2015 DOI: 10.1038/nbt.3350 Link to full text
Abstract: Calcium (Ca(2+)) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis. However, study of Ca(2+) responses has been hampered by technological limitations of existing Ca(2+)-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca(2+) levels through activation of Ca(2+)-selective endogenous Ca(2+) release-activated Ca(2+) (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca(2+) levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca(2+)-associated processes and facilitate screening for drug candidates that antagonize Ca(2+) signals.

Spatiotemporal control of fibroblast growth factor receptor signals by blue light.

blue CRY2/CRY2 HeLa HUVEC Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Chem Biol, 26 Jun 2014 DOI: 10.1016/j.chembiol.2014.05.013 Link to full text
Abstract: Fibroblast growth factor receptors (FGFRs) regulate diverse cellular behaviors that should be exquisitely controlled in space and time. We engineered an optically controlled FGFR (optoFGFR1) by exploiting cryptochrome 2, which homointeracts upon blue light irradiation. OptoFGFR1 can rapidly and reversibly control intracellular FGFR1 signaling within seconds by illumination with blue light. At the subcellular level, localized activation of optoFGFR1 induced cytoskeletal reorganization. Utilizing the high spatiotemporal precision of optoFGFR1, we efficiently controlled cell polarity and induced directed cell migration. OptoFGFR1 provides an effective means to precisely control FGFR signaling and is an important optogenetic tool that can be used to study diverse biological processes both in vitro and in vivo.

A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.

red PhyB/PIF6 CHO-K1 Cos-7 HUVEC MEF-1 NIH/3T3 Transgene expression Developmental processes
Nucleic Acids Res, 25 Jan 2013 DOI: 10.1093/nar/gkt002 Link to full text
Abstract: Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system's performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms.
Submit a new publication to our database