Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 100 results

Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms.

blue AsLOV2 HeLa Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 23 Dec 2019 DOI: 10.1038/s41556-019-0438-7 Link to full text
Abstract: Guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) coordinate the activation state of the Rho family of GTPases for binding to effectors. Here, we exploited proximity-dependent biotinylation to systematically define the Rho family proximity interaction network from 28 baits to produce 9,939 high-confidence proximity interactions in two cell lines. Exploiting the nucleotide states of Rho GTPases, we revealed the landscape of interactions with RhoGEFs and RhoGAPs. We systematically defined effectors of Rho proteins to reveal candidates for classical and atypical Rho proteins. We used optogenetics to demonstrate that KIAA0355 (termed GARRE here) is a RAC1 interactor. A functional screen of RHOG candidate effectors identified PLEKHG3 as a promoter of Rac-mediated membrane ruffling downstream of RHOG. We identified that active RHOA binds the kinase SLK in Drosophila and mammalian cells to promote Ezrin-Radixin-Moesin phosphorylation. Our proximity interactions data pave the way for dissecting additional Rho signalling pathways, and the approaches described here are applicable to the Ras family.

Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T HeLa in vitro
ACS Synth Biol, 17 Dec 2019 DOI: 10.1021/acssynbio.9b00277 Link to full text
Abstract: Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.

Optogenetic control of cofilin and αTAT in living cells using Z-lock.

blue LOVTRAP HEK293T HeLa MTLn3 Control of cytoskeleton / cell motility / cell shape
Nat Chem Biol, 18 Nov 2019 DOI: 10.1038/s41589-019-0405-4 Link to full text
Abstract: Here we introduce Z-lock, an optogenetic approach for reversible, light-controlled steric inhibition of protein active sites. The light oxygen voltage (LOV) domain and Zdk, a small protein that binds LOV selectively in the dark, are appended to the protein of interest where they sterically block the active site. Irradiation causes LOV to change conformation and release Zdk, exposing the active site. Computer-assisted protein design was used to optimize linkers and Zdk-LOV affinity, for both effective binding in the dark, and effective light-induced release of the intramolecular interaction. Z-lock cofilin was shown to have actin severing ability in vitro, and in living cancer cells it produced protrusions and invadopodia. An active fragment of the tubulin acetylase αTAT was similarly modified and shown to acetylate tubulin on irradiation.

Composition dependent phase separation underlies directional flux through the nucleolus.

blue CRY2olig HeLa Organelle manipulation
bioRxiv, 22 Oct 2019 DOI: 10.1101/809210 Link to full text
Abstract: Intracellular bodies such as nucleoli, Cajal bodies, and various signaling assemblies, represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions, particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions (IDRs), are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3–6 have led to the concept that a single fixed saturation concentration (Csat) is a defining feature of endogenous LLPS7–9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed Csat remains largely untested within living cells, where the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed Csat. As the concentration of individual components is varied, their partition coefficients change, in a manner that can be used to extract thermodynamic interaction energies, that we interpret within a framework we term polyphasic interaction thermodynamic analysis (PITA). We find that heterotypic interactions between protein and RNA components stabilize a variety of archetypal intracellular condensates, including the nucleolus, Cajal bodies, stress granules, and P bodies. These findings imply that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA processing condensates such as the nucleolus, this stoichiometric self-tuning manifests in selective exclusion of fully-assembled RNP complexes, providing a thermodynamic basis for vectorial ribosomal RNA (rRNA) flux out of the nucleolus. The PITA methodology is conceptually straightforward and readily implemented, and it can be broadly utilized to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deep understanding of the thermodynamics of multi-component intracellular phase behavior and its interplay with nonequilibrium activity characteristic of endogenous condensates.

Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins.

blue iLID Magnets HEK293 HeLa NIH/3T3
Nat Methods, 14 Oct 2019 DOI: 10.1038/s41592-019-0592-7 Link to full text
Abstract: Intracellular antibodies have become powerful tools for imaging, modulating and neutralizing endogenous target proteins. Here, we describe an optogenetically activated intracellular antibody (optobody) consisting of split antibody fragments and blue-light inducible heterodimerization domains. We expanded this optobody platform by generating several optobodies from previously developed intracellular antibodies, and demonstrated that photoactivation of gelsolin and β2-adrenergic receptor (β2AR) optobodies suppressed endogenous gelsolin activity and β2AR signaling, respectively.

Imaging of Morphological and Biochemical Hallmarks of Apoptosis with Optimized Optogenetic Actuators.

blue CRY2/CIB1 HEK293T HeLa Neuro-2a Cell death
PLoS ONE, 3 Oct 2019 DOI: 10.1074/jbc.ra119.009141 Link to full text
Abstract: The creation of optogenetic switches for specific activation of cell-death pathways can provide insights into apoptosis and could also form a basis for non-invasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/CIB, a blue light–activated protein–protein dimerization module from the plant Arabidopsis thaliana together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane (OMM)-targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer-membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2–BAX system (henceforth referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for the membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters for imaging key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we have created a next-generation Cry2/CIB–BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.

FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics.

blue AsLOV2 CRY2/CIB1 HeLa MDCK mouse in vivo Signaling cascade control
Nat Methods, 9 Sep 2019 DOI: 10.1038/s41592-019-0541-5 Link to full text
Abstract: Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.

A blue light receptor that mediates RNA binding and translational regulation.

blue PAL E. coli HeLa in vitro
Nat Chem Biol, 26 Aug 2019 DOI: 10.1038/s41589-019-0346-y Link to full text
Abstract: Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.

CLIC4, a new component of the cytokinetic ring, regulates actin cytoskeleton dynamics during the anaphase-to-telophase transition.

blue CRY2/CIB1 CRY2/CRY2 HeLa Control of cytoskeleton / cell motility / cell shape
bioRxiv, 14 Aug 2019 DOI: 10.1101/723940 Link to full text
Abstract: During mitotic cell division, the actin cytoskeleton undergoes several dynamic changes that lead to cell rounding during metaphase, the formation and ingression of the cytokinetic contractile ring during anaphase, and finally the formation of the intercellular bridge during telophase. These dramatic changes in the organization of the actomyosin cytoskeleton play a key role in progression through mitosis and are regulated by a number of proteins. While the regulators of cytokinetic ring formation and contraction are well-established, very little is known about the proteins that are responsible for the changing actin dynamics during the transition from an actively ingressing cytokinetic furrow to the stable intercellular bridge connecting two daughter cells during telophase. Here, we describe a role for CLIC4 in regulating this anaphase-to-telophase transition. We first describe CLIC4 as a new component of the cytokinetic ring that is required for successful completion of mitotic cell division. We also show that RhoA recruits CLIC4 to the cytokinetic ring and that CLIC4regulates the formation of a stable intercellular bridge by preventing regression of the cytokinetic furrow. Finally, we demonstrate that CLIC4 regulates the remodeling of sub-plasma membrane actomyosin network within the furrow by recruiting MST4 kinase and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in the transition from the contracting cytokinetic ring to the intercellular bridge during cytokinesis.

A split CRISPR-Cpf1 platform for inducible genome editing and gene activation.

blue Magnets HEK293T HeLa mouse in vivo Nucleic acid editing
Nat Chem Biol, 12 Aug 2019 DOI: 10.1038/s41589-019-0338-y Link to full text
Abstract: The CRISPR-Cpf1 endonuclease has recently been demonstrated as a powerful tool to manipulate targeted gene sequences. Here, we performed an extensive screening of split Cpf1 fragments and identified a pair that, combined with inducible dimerization domains, enables chemical- and light-inducible genome editing in human cells. We also identified another split Cpf1 pair that is spontaneously activated. The newly generated amino and carboxyl termini of the spontaneously activated split Cpf1 can be repurposed as de novo fusion sites of artificial effector domains. Based on this finding, we generated an improved split dCpf1 activator, which has the potential to activate endogenous genes more efficiently than a previously established dCas9 activator. Finally, we showed that the split dCpf1 activator can efficiently activate target genes in mice. These results demonstrate that the present split Cpf1 provides an efficient and sophisticated genome manipulation in the fields of basic research and biotechnological applications.

Ran GTPase regulates non-centrosomal microtubule nucleation and is transported by actin waves towards the neurite tip.

blue LOVTRAP HeLa primary mouse cortical neurons primary mouse hippocampal neurons Control of cytoskeleton / cell motility / cell shape
bioRxiv, 28 Jun 2019 DOI: 10.1101/684720 Link to full text
Abstract: Microtubule (MT) is the most abundant cytoskeleton in neurons and controls multiple facets of their development. While the organizing center of MTs in mitotic cells is typically located at the centrosome, MT nucleation in post-mitotic neurons switches to non-centrosomal sites. A handful of proteins and organelle have been shown to promote non-centrosomal MT formation in neurons, yet the regulation mechanism remains unknown. Here we demonstrate that the small GTPase Ran is a key regulator of non-centrosomal MT nucleation in neurons. The GTP-bound Ran (RanGTP) localizes to the neurite tips and around the soma. Using the RanGTP- and RanGDP-mimic mutants, we show that RanGTP promotes MT nucleation at the tip of the neurite. To demonstrate that RanGTP can promote MT nucleation in regions other than the neurite tip, an optogenetic tool called RanTRAP was constructed to enable light-induced local production of RanGTP in the neuronal cytoplasm. An increase of non-centrosomal MT nucleation can be observed by elevating the RanGTP level along the neurite using RanTRAP, establishing a new role for Ran in regulating neuronal MTs. Additionally, the mechanism of RanGTP enrichment at the neurite tip was examined. We discovered that actin waves drive the anterograde transport of RanGTP towards the neurite tip. Pharmacological disruption of actin waves abolishes the enrichment of RanGTP and reduces the non-centrosomal MT nucleation at the neurite tip. These observations provide a novel regulation mechanism of MTs and an indirect connection between the actin and MT cytoskeletons in neurons.

OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.

blue CRY2/CIB1 HeLa Signaling cascade control
ACS Synth Biol, 24 Jun 2019 DOI: 10.1021/acssynbio.9b00059 Link to full text
Abstract: Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.

Engineering proteins for allosteric control by light or ligands.

blue AsLOV2 HEK293T HeLa
Nat Protoc, 10 May 2019 DOI: 10.1038/s41596-019-0165-3 Link to full text
Abstract: Control of protein activity in living cells can reveal the role of spatiotemporal dynamics in signaling circuits. Protein analogs with engineered allosteric responses can be particularly effective in the interrogation of protein signaling, as they can replace endogenous proteins with minimal perturbation of native interactions. However, it has been a challenge to identify allosteric sites in target proteins where insertion of responsive domains produces an allosteric response comparable to the activity of native proteins. Here, we describe a detailed protocol to generate genetically encoded analogs of proteins that can be allosterically controlled by either rapamycin or blue light, as well as experimental procedures to produce and test these analogs in vitro and in mammalian cell lines. We describe computational methods, based on crystal structures or homology models, to identify effective sites for insertion of either an engineered rapamycin-responsive (uniRapR) domain or the light-responsive light-oxygen-voltage 2 (LOV2) domain. The inserted domains allosterically regulate the active site, responding to rapamycin with irreversible activation, or to light with reversible inactivation at higher spatial and temporal resolution. These strategies have been successfully applied to catalytic domains of protein kinases, Rho family GTPases, and guanine exchange factors (GEFs), as well as the binding domain of a GEF Vav2. Computational tasks can be completed within a few hours, followed by 1-2 weeks of experimental validation. We provide protocols for computational design, cloning, and experimental testing of the engineered proteins, using Src tyrosine kinase, GEF Vav2, and Rho GTPase Rac1 as examples.

Accurate manipulation of optogenetic proteins with wavelength tunable femtosecond laser system.

blue CRY2/CIB1 HEK293T HeLa
J Appl Phys, 25 Apr 2019 DOI: 10.1063/1.5084197 Link to full text
Abstract: Photoactivated proteins controlled by optogenetic tools have broad application prospects in cell biology, neuroscience, and brain science. However, due to the narrow excitation wavelength width and the inflexibility of spatiotemporal operations, conventional sources such as visible light severely limit the further application of optogenetics. In this work, a femtosecond laser-operated system based on the optogenetic application was designed to address these limitations. The interaction between the photoreceptor and its partner protein can be triggered by a wavelength-tunable femtosecond laser. The results indicated that this process can be used to accurately manipulate optogenetic proteins in cells, which met spectral flexibility (700–1040 nm) and operational flexibility in time and space (a single cell to multiple cells). To demonstrate the practical applications of this process, the apoptotic signaling pathway of cancer cells was taken as an example. We believe that this wavelength-tunable femtosecond laser system will promote the development of optogenetics, making optics and even physics more powerful tools in biology.

Reversible induction of mitophagy by an optogenetic bimodular system.

blue iLID ETNA HEK293T HeLa human T cells zebrafish in vivo Organelle manipulation
Nat Commun, 4 Apr 2019 DOI: 10.1038/s41467-019-09487-1 Link to full text
Abstract: Autophagy-mediated degradation of mitochondria (mitophagy) is a key process in cellular quality control. Although mitophagy impairment is involved in several patho-physiological conditions, valuable methods to induce mitophagy with low toxicity in vivo are still lacking. Herein, we describe a new optogenetic tool to stimulate mitophagy, based on light-dependent recruitment of pro-autophagy protein AMBRA1 to mitochondrial surface. Upon illumination, AMBRA1-RFP-sspB is efficiently relocated from the cytosol to mitochondria, where it reversibly mediates mito-aggresome formation and reduction of mitochondrial mass. Finally, as a proof of concept of the biomedical relevance of this method, we induced mitophagy in an in vitro model of neurotoxicity, fully preventing cell death, as well as in human T lymphocytes and in zebrafish in vivo. Given the unique features of this tool, we think it may turn out to be very useful for a wide range of both therapeutic and research applications.

Optogenetic perturbation of the biochemical pathways that control cell behavior.

blue CRY2/CIB1 HEK293T HeLa MTLn3
Meth Enzymol, 12 Mar 2019 DOI: 10.1016/bs.mie.2019.02.020 Link to full text
Abstract: Optogenetic tools provide a level of spatial and temporal resolution needed to shed new light on dynamic intercellular processes. In this chapter we outline specific protocols for applying these tools to cell motility (optogenetic cofilin), apoptosis [optogenetic Bcl-like protein 4 (Bax)], and protein kinase-mediated signaling pathways [optogenetic cAMP-dependent protein kinase (PKA)]. The activity of these optogenetic species is regulated by the light-mediated dimerization of a cryptochrome/Cib protein pair, which controls the intracellular positioning of the protein of interest. The light induced recruitment of cofilin to the cytoskeleton is utilized for directed migration studies and filopodial dynamics. Light-triggered migration of Bax to the outer mitochondrial membrane induces cellular collapse and eventual apoptosis. Finally, the light-mediated movement of PKA to specific intracellular compartments offers the means to assess the consequences of PKA activity in a site-specific fashion via phosphoproteomic analysis.

Chapter Ten - Design, construction, and validation of optogenetic proteins.

blue CRY2/CIB1 HeLa MTLn3 MVD7
Lancet Diabetes Endocrinol, 11 Mar 2019 DOI: 10.1016/bs.mie.2019.02.019 Link to full text
Abstract: Cellular optogenetics employs light-regulated, genetically encoded protein actuators to perturb cellular signaling with unprecedented spatial and temporal control. Here, we present a potentially generalized approach for transforming a given protein of interest (POI) into an optogenetic species. We describe the rational and methods by which we developed three different optogenetic POIs utilizing the Cry2-Cib photodimerizing pair. The process pipeline is highlighted by (1) developing a low level, constitutively active POI that is independent of endogenous regulation, (2) fusion of the mutant protein of interest to an optogenetic photodimerizing system, and (3) light-mediated recruitment of the light-responsive POI to specific subcellular regions.

Neurotrophin receptor tyrosine kinases regulated with near-infrared light.

blue red DrBphP TULIP CHO HeLa mouse in vivo NIH/3T3 PC6-3 SH-SY5Y U-87 MG Signaling cascade control Multichromatic
Nat Commun, 8 Mar 2019 DOI: 10.1038/s41467-019-08988-3 Link to full text
Abstract: Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.

Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.

blue CRY2/CIB1 HEK293T HeLa mouse in vivo Signaling cascade control
Biomaterials, 1 Feb 2019 DOI: 10.1016/j.biomaterials.2019.01.042 Link to full text
Abstract: In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The implantable, wireless, recyclable, less-invasive and biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids, for protein import; upconversion rods-encapsulated flexible capsule (UCRs-capsule), for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (∼3.5 mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.

Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing.

blue AsLOV2 HeLa
Nat Commun, 17 Jan 2019 DOI: 10.1038/s41467-018-08050-8 Link to full text
Abstract: From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.

Optogenetic control of integrin-matrix interaction.

red PhyB/PIF6 HEK293T HeLa MCF7 Signaling cascade control Control of cell-cell / cell-material interactions
Commun Biol, 8 Jan 2019 DOI: 10.1038/s42003-018-0264-7 Link to full text
Abstract: Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix–OptoIntegrin system may serve as a blueprint for rendering matrix–receptor interactions amendable to precise control with light.

Development of a Wireless-Controlled LED Array for the Tunable Optogenetic Control of Cellular Activities.

blue CRY2/CIB1 HeLa Signaling cascade control Control of vesicular transport
Engineering, 6 Dec 2018 DOI: 10.1016/j.eng.2018.08.005 Link to full text
Abstract: Abstract not available.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

blue iLID C. elegans in vivo HEK293 HeLa NIH/3T3 S. cerevisiae U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.048 Link to full text
Abstract: Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, ‘‘Corelets,’’ and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes.

Optogenetic dissection of Rac1 and Cdc42 gradient shaping.

blue CRY2/CIB1 CRY2/CRY2 HeLa Control of cytoskeleton / cell motility / cell shape
Nat Commun, 16 Nov 2018 DOI: 10.1038/s41467-018-07286-8 Link to full text
Abstract: During cell migration, Rho GTPases spontaneously form spatial gradients that define the front and back of cells. At the front, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Here we report, using a combination of optogenetics and micropatterning, that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by transport mechanisms. Cdc42 simply follows the distribution of Guanine nucleotide Exchange Factors, whereas Rac1 shaping requires the activity of a GTPase-Activating Protein, β2-chimaerin, which is sharply localized at the tip of the cell through feedbacks from Cdc42 and Rac1. Functionally, the spatial extent of Rho GTPases gradients governs cell migration, a sharp Cdc42 gradient maximizes directionality while an extended Rac1 gradient controls the speed.

Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.

blue AsLOV2 HeLa in vitro S. cerevisiae Epigenetic modification
ACS Synth Biol, 15 Nov 2018 DOI: 10.1021/acssynbio.8b00368 Link to full text
Abstract: Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
Submit a new publication to our database