Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results

Light-based tuning of ligand half-life supports kinetic proofreading model of T cell activation.

blue LOVTRAP Jurkat Signaling cascade control
bioRxiv, 4 Oct 2018 DOI: 10.1101/432864 Link to full text
Abstract: T cells are thought to discriminate stimulatory versus non-stimulatory ligands by converting small changes in ligand binding half-life to large changes in cell activation. Such a kinetic proofreading model has been difficult to test directly, as existing methods of altering ligand binding half-life also change other potentially important biophysical parameters, most notably the stability of the receptor-ligand interaction under load. Here we develop an optogenetic approach to specifically tune the binding half-life of a light-responsive ligand to a chimeric antigen receptor without changing other binding parameters. By simultaneously manipulating binding half-life while controlling for receptor occupancy, we find that signaling is strongly gated by ligand binding half-life. Our results provide direct evidence of kinetic proofreading in ligand discrimination by T cells.

Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor.

red PhyB/PIF6 Jurkat Signaling cascade control Immediate control of second messengers
bioRxiv, 1 Oct 2018 DOI: 10.1101/432740 Link to full text
Abstract: The pivotal task of the immune system is to distinguish between self and foreign antigens. The kinetic proofreading model (KPR) proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the ligand-TCR interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B to selectively control the dynamics of ligand binding to the TCR by light. Combining experiments with mathematical modeling we find that the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating the KPR hypothesis.

An optogenetic gene expression system with rapid activation and deactivation kinetics.

blue EL222 HEK293T Jurkat zebrafish in vivo Transgene expression
Nat Chem Biol, 12 Jan 2014 DOI: 10.1038/nchembio.1430 Link to full text
Abstract: Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.
Submit a new publication to our database