Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 66 results

Optogenetic Control of Myocardin‐Related Transcription Factor A Subcellular Localization and Transcriptional Activity Steers Membrane Blebbing and Invasive Cancer Cell Motility.

blue AsLOV2 HEK293 HeLa NIH/3T3 Endogenous gene expression
Adv Biol, 8 Feb 2021 DOI: 10.1002/adbi.202000208 Link to full text
Abstract: The myocardin‐related transcription factor A (MRTF‐A) controls the transcriptional activity of the serum response factor (SRF) in a tightly controlled actin‐dependent manner. In turn, MRTF‐A is crucial for many actin‐dependent processes including adhesion, migration, and contractility and has emerged as novel targets for anti‐tumor strategies. MRTF‐A rapidly shuttles between cytoplasmic and nuclear compartment via dynamic actin interactions within its N‐terminal RPEL domain. Here, optogenetics is used to spatiotemporally control MRTF‐A nuclear localization by blue light using the light‐oxygen‐voltage‐sensing domain 2‐domain based system LEXY (light‐inducible nuclear export system). It is found that light‐regulated nuclear export of MRTF‐A occurs within 10–20 min. Importantly, MRTF‐A‐LEXY shuttling is independent of perturbations of actin dynamics. Furthermore, light‐regulation of MRTF‐A‐LEXY is reversible and repeatable for several cycles of illumination and its subcellular localization correlates with SRF transcriptional activity. As a consequence, optogenetic control of MRTF‐A subcellular localization determines subsequent cytoskeletal dynamics such as non‐apoptotic plasma membrane blebbing as well as invasive tumor‐cell migration through 3D collagen matrix. This data demonstrate robust optogenetic regulation of MRTF as a powerful tool to control SRF‐dependent transcription as well as cell motile behavior.

Optogenetic Control of Phosphatidylinositol (3,4,5)‐triphosphate Production by Light‐sensitive Cryptochrome Proteins on the Plasma Membrane.

blue CRY2/CIB1 C2C12 CHO-K1 NIH/3T3
Chin J Chem, 21 Jan 2021 DOI: 10.1002/cjoc.202000648 Link to full text
Abstract: Phosphatidylinositol (3,4,5)‐triphosphate (PIP3), acts as a fundamental second messenger, is emerging as a promising biomarker for disease diagnosis and prognosis. However, the real time analysis of phosphoinositide in living cells remains key challenge owing to the low basal abundance and its fast metabolic rate. Herein, we design an optogenetic system that uses light sensitive protein‐protein interaction between Arabidopsis cryptochrome 2 (CRY2) and CIB1 to spatiotemporally visualize the PIP3 production with sub‐second timescale. In this system, a CIBN is anchored on the plasma membrane, whereas a CRY2 fused with a constitutively active PI3‐kinase (acPI3K) would be driven from the cytosol to the membrane by the blue‐light‐activated CRY2‐CIB1 interaction upon light irradiation. The PIP3 production is visualized via a fused fluorescent protein by the translocation of a Pleckstrin Homology (PH) domain(GRP1) from the cytosol to the plasma membrane with high specificity. We demonstrated the fast dynamics and reversibility of the optogenetic system initiated PIP3 synthesis on the plasma membrane. Notably, the real‐time cell movements were also observed upon localized light stimulation. The established optogenetic method provides a novel spatiotemporal strategy for specific PIP3 visualization, which is beneficial to improve the understanding of PIP3 functions.

A synthetic gene circuit for imaging-free detection of dynamic cell signaling.

blue iLID NIH/3T3
bioRxiv, 6 Jan 2021 DOI: 10.1101/2021.01.06.425615 Link to full text
Abstract: Cells employ intracellular signaling pathways to sense and respond to changes in their external environment. In recent years, live-cell biosensors have revealed complex pulsatile dynamics in many pathways, but studies of these signaling dynamics are limited by the necessity of live-cell imaging at high spatiotemporal resolution1. Here, we describe an approach to infer pulsatile signaling dynamics from just a single measurement in fixed cells using a pulse-detecting gene circuit. We computationally screened for circuit with pulse detecting capability, revealing an incoherent feedforward topology that robustly performs this computation. We then implemented the motif experimentally for the Erk signaling pathway using a single engineered transcription factor and fluorescent protein reporter. Our ‘recorder of Erk activity dynamics’ (READer) responds sensitively to both spontaneous and stimulus-driven Erk pulses. READer circuits thus open the door to permanently labeling transient, dynamic cell populations to elucidate the mechanistic underpinnings and biological consequences of signaling dynamics.

Clustering-based positive feedback between a kinase and its substrate enables effective T-cell receptor signaling.

blue CRY2/CRY2 iLID HEK293T MEF-1 NIH/3T3 Signaling cascade control
bioRxiv, 6 Oct 2020 DOI: 10.1101/2020.10.06.328708 Link to full text
Abstract: Protein clusters and condensates are pervasive in mammalian signaling. Yet how the signaling capacity of higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. Here, we present an optogenetic approach to switch between light-induced clusters and simple protein heterodimers with a single point mutation. We apply this system to study how clustering affects signaling from the kinase Zap70 and its substrate LAT, proteins that normally form membrane-localized clusters during T cell activation. We find that light-induced clusters of LAT and Zap70 trigger potent activation of downstream signaling pathways even in non-T cells, whereas one-to-one dimers do not. We provide evidence that clusters harbor a local positive feedback loop between three components: Zap70, LAT, and Src-family kinases that bind to phosphorylated LAT and further activate Zap70. Overall, our study provides evidence for a specific role of protein condensates in cell signaling, and identifies a simple biochemical circuit that can robustly sense protein oligomerization state.

DMA-tudor interaction modules control the specificity of in vivo condensates.

blue CRY2/CRY2 MEF-1 NIH/3T3
bioRxiv, 16 Sep 2020 DOI: 10.1101/2020.09.15.297994 Link to full text
Abstract: Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is required for the formation of three different membraneless organelles (MLOs), we hypothesized that at least one region of SMN employs a unifying mechanism of condensation. Unexpectedly, we show here that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, while its two intrinsically disordered regions (IDRs) were not. The condensate-forming property of the SMN tudor domain required binding to its ligand, dimethylarginine (DMA), and was shared by at least seven additional tudor domains in six different proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs – gems and Cajal bodies – were separate or overlapping. These findings show that the combination of a tudor domain bound to its DMA ligand – DMA-tudor – represents a versatile yet specific interaction module that regulates MLO assembly and defines their composition.

Nucleated transcriptional condensates amplify gene expression.

blue CRY2olig NIH/3T3 Endogenous gene expression Organelle manipulation
Nat Cell Biol, 14 Sep 2020 DOI: 10.1038/s41556-020-00578-6 Link to full text
Abstract: Membraneless organelles or condensates form through liquid-liquid phase separation1-4, which is thought to underlie gene transcription through condensation of the large-scale nucleolus5-7 or in smaller assemblies known as transcriptional condensates8-11. Transcriptional condensates have been hypothesized to phase separate at particular genomic loci and locally promote the biomolecular interactions underlying gene expression. However, there have been few quantitative biophysical tests of this model in living cells, and phase separation has not yet been directly linked with dynamic transcriptional outputs12,13. Here, we apply an optogenetic approach to show that FET-family transcriptional regulators exhibit a strong tendency to phase separate within living cells, a process that can drive localized RNA transcription. We find that TAF15 has a unique charge distribution among the FET family members that enhances its interactions with the C-terminal domain of RNA polymerase II. Nascent C-terminal domain clusters at primed genomic loci lower the energetic barrier for nucleation of TAF15 condensates, which in turn further recruit RNA polymerase II to drive transcriptional output. These results suggest that positive feedback between interacting transcriptional components drives localized phase separation to amplify gene expression.

CL6mN: Rationally Designed Optogenetic Photoswitches with Tunable Dissociation Dynamics.

blue CRY2/CIB1 HEK293T NIH/3T3
ACS Synth Biol, 14 Aug 2020 DOI: 10.1021/acssynbio.0c00362 Link to full text
Abstract: The field of optogenetics uses genetically encoded photoswitches to modulate biological phenomena with high spatiotemporal resolution. We report a set of rationally designed optogenetic photoswitches that use the photolyase homology region of A. thaliana cryptochrome 2 (Cry2PHR) as a building block and exhibit highly efficient and tunable clustering in a blue-light dependent manner. CL6mN (Cry2-mCherry-LRP6c with N mutated PPPAP motifs) proteins were designed by mutating and/or truncating five crucial PPP(S/T)P motifs near the C-terminus of the optogenetic Wnt activator Cry2-mCherry-LRP6c, thus eliminating its Wnt activity. Light-induced CL6mN clusters have significantly greater dissociation half-lives than clusters of wild-type Cry2PHR. Moreover, the dissociation half-lives can be tuned by varying the number of PPPAP motifs, with the half-life increasing as much as 6-fold for a variant with five motifs (CL6m5) relative to Cry2PHR. Finally, we demonstrate the compatibility of CL6mN with previously reported Cry2-based photoswitches by optogenetically activating RhoA in mammalian cells.

Engineering combinatorial and dynamic decoders using synthetic immediate-early genes.

blue iLID NIH/3T3
Commun Biol, 13 Aug 2020 DOI: 10.1038/s42003-020-01171-1 Link to full text
Abstract: Many cell- and tissue-level functions are coordinated by intracellular signaling pathways that trigger the expression of context-specific target genes. Yet the input-output relationships that link pathways to the genes they activate are incompletely understood. Mapping the pathway-decoding logic of natural target genes could also provide a basis for engineering novel signal-decoding circuits. Here we report the construction of synthetic immediate-early genes (SynIEGs), target genes of Erk signaling that implement complex, user-defined regulation and can be monitored by using live-cell biosensors to track their transcription and translation. We demonstrate the power of this approach by confirming Erk duration-sensing by FOS, elucidating how the BTG2 gene is differentially regulated by external stimuli, and designing a synthetic immediate-early gene that selectively responds to the combination of growth factor and DNA damage stimuli. SynIEGs pave the way toward engineering molecular circuits that decode signaling dynamics and combinations across a broad range of cellular contexts.

Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold.

blue AsLOV2 iLID HEK293T in vitro NIH/3T3
Nat Commun, 13 Aug 2020 DOI: 10.1038/s41467-020-17837-7 Link to full text
Abstract: Monobodies are synthetic non-immunoglobulin customizable protein binders invaluable to basic and applied research, and of considerable potential as future therapeutics and diagnostic tools. The ability to reversibly control their binding activity to their targets on demand would significantly expand their applications in biotechnology, medicine, and research. Here we present, as proof-of-principle, the development of a light-controlled monobody (OptoMB) that works in vitro and in cells and whose affinity for its SH2-domain target exhibits a 330-fold shift in binding affinity upon illumination. We demonstrate that our αSH2-OptoMB can be used to purify SH2-tagged proteins directly from crude E. coli extract, achieving 99.8% purity and over 40% yield in a single purification step. By virtue of their ability to be designed to bind any protein of interest, OptoMBs have the potential to find new powerful applications as light-switchable binders of untagged proteins with the temporal and spatial precision afforded by light.

Optogenetic control of protein binding using light-switchable nanobodies.

blue red AsLOV2 iLID PhyB/PIF6 HEK293 HEK293T NIH/3T3 Signaling cascade control
Nat Commun, 13 Aug 2020 DOI: 10.1038/s41467-020-17836-8 Link to full text
Abstract: A growing number of optogenetic tools have been developed to reversibly control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in cells or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications including reversibly binding to endogenous intracellular targets, modulating signaling pathway activity, and controlling binding to purified protein targets in vitro. This work represents a step towards programmable photoswitchable regulation of a wide variety of target proteins.

Optical Activation of TrkB Signaling.

blue CRY2/CIB1 CRY2/CRY2 VfAU1-LOV NIH/3T3 PC-12 Signaling cascade control
J Mol Biol, 15 May 2020 DOI: 10.1016/j.jmb.2020.05.002 Link to full text
Abstract: Brain-derived neurotrophic factor (BDNF), via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2 (CRY2), the light-inducible homo-interaction of the intracellular domain of TrkB (iTrkB) in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the CRY2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of iTrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate BDNF/TrkB signaling with tight spatial and temporal control.

Optogenetic control of mRNA localization and translation in live cells.

blue CRY2/CIB1 HeLa NIH/3T3 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Endogenous gene expression
Nat Cell Biol, 17 Feb 2020 DOI: 10.1038/s41556-020-0468-1 Link to full text
Abstract: Despite efforts to visualize the spatio-temporal dynamics of single messenger RNAs, the ability to precisely control their function has lagged. This study presents an optogenetic approach for manipulating the localization and translation of specific mRNAs by trapping them in clusters. This clustering greatly amplified reporter signals, enabling endogenous RNA-protein interactions to be clearly visualized in single cells. Functionally, this sequestration reduced the ability of mRNAs to access ribosomes, markedly attenuating protein synthesis. A spatio-temporally resolved analysis indicated that sequestration of endogenous β-actin mRNA attenuated cell motility through the regulation of focal-adhesion dynamics. These results suggest a mechanism highlighting the indispensable role of newly synthesized β-actin protein for efficient cell migration. This platform may be broadly applicable for use in investigating the spatio-temporal activities of specific mRNAs in various biological processes.

Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines.

blue CRY2/CIB1 NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Sci Adv, 3 Jan 2020 DOI: 10.1126/sciadv.aau5670 Link to full text
Abstract: Directional cell motility relies on the ability of single cells to establish a front-rear polarity and can occur in the absence of external cues. The initiation of migration has often been attributed to the spontaneous polarization of cytoskeleton components, while the spatiotemporal evolution of cell-substrate interaction forces has yet to be resolved. Here, we establish a one-dimensional microfabricated migration assay that mimics the complex in vivo fibrillar environment while being compatible with high-resolution force measurements, quantitative microscopy, and optogenetics. Quantification of morphometric and mechanical parameters of NIH-3T3 fibroblasts and RPE1 epithelial cells reveals a generic stick-slip behavior initiated by contractility-dependent stochastic detachment of adhesive contacts at one side of the cell, which is sufficient to trigger cell motility in 1D in the absence of pre-established polarity. A theoretical model validates the crucial role of adhesion dynamics, proposing that front-rear polarity can emerge independently of a complex self-polarizing system.

Optical activation of TrkB receptors.

blue CRY2/CIB1 CRY2/CRY2 VfAU1-LOV NIH/3T3 PC-12 Signaling cascade control Cell differentiation Developmental processes
bioRxiv, 15 Dec 2019 DOI: 10.1101/2019.12.15.876722 Link to full text
Abstract: Brain-derived neurotrophic factor (BDNF), via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB receptors with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB receptors. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2 (CRY2), the light-inducible homo-interaction of the intracellular domain of TrkB (iTrkB) in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB receptors to fulfill customized needs. By comparing all the different strategies, we find that the CRY2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of iTrkB is most efficient in activating TrkB receptors. The optogenetic strategies presented are promising tools to investigate BDNF/TrkB signaling with tight spatial and temporal control.

Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.

red PhyB/PIF3 PhyB/PIF6 CHO-K1 in vitro NIH/3T3
Commun Biol, 2 Dec 2019 DOI: 10.1038/s42003-019-0687-9 Link to full text
Abstract: Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.

Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins.

blue iLID Magnets HEK293 HeLa NIH/3T3
Nat Methods, 14 Oct 2019 DOI: 10.1038/s41592-019-0592-7 Link to full text
Abstract: Intracellular antibodies have become powerful tools for imaging, modulating and neutralizing endogenous target proteins. Here, we describe an optogenetically activated intracellular antibody (optobody) consisting of split antibody fragments and blue-light inducible heterodimerization domains. We expanded this optobody platform by generating several optobodies from previously developed intracellular antibodies, and demonstrated that photoactivation of gelsolin and β2-adrenergic receptor (β2AR) optobodies suppressed endogenous gelsolin activity and β2AR signaling, respectively.

Controlling the material properties and rRNA processing function of the nucleolus using light.

blue CRY2olig NIH/3T3 Xenopus oocytes Organelle manipulation
Proc Natl Acad Sci USA, 9 Aug 2019 DOI: 10.1073/pnas.1903870116 Link to full text
Abstract: The nucleolus is a prominent nuclear condensate that plays a central role in ribosome biogenesis by facilitating the transcription and processing of nascent ribosomal RNA (rRNA). A number of studies have highlighted the active viscoelastic nature of the nucleolus, whose material properties and phase behavior are a consequence of underlying molecular interactions. However, the ways in which the material properties of the nucleolus impact its function in rRNA biogenesis are not understood. Here we utilize the Cry2olig optogenetic system to modulate the viscoelastic properties of the nucleolus. We show that above a threshold concentration of Cry2olig protein, the nucleolus can be gelled into a tightly linked, low mobility meshwork. Gelled nucleoli no longer coalesce and relax into spheres but nonetheless permit continued internal molecular mobility of small proteins. These changes in nucleolar material properties manifest in specific alterations in rRNA processing steps, including a buildup of larger rRNA precursors and a depletion of smaller rRNA precursors. We propose that the flux of processed rRNA may be actively tuned by the cell through modulating nucleolar material properties, which suggests the potential of materials-based approaches for therapeutic intervention in ribosomopathies.

High-throughput multicolor optogenetics in microwell plates.

blue red iLID PhyB/PIF6 HEK293T NIH/3T3 Signaling cascade control Multichromatic
Nat Protoc, 24 Jun 2019 DOI: 10.1038/s41596-019-0178-y Link to full text
Abstract: Optogenetic probes can be powerful tools for dissecting complexity in cell biology, but there is a lack of instrumentation to exploit their potential for automated, high-information-content experiments. This protocol describes the construction and use of the optoPlate-96, a platform for high-throughput three-color optogenetics experiments that allows simultaneous manipulation of common red- and blue-light-sensitive optogenetic probes. The optoPlate-96 enables illumination of individual wells in 96-well microwell plates or in groups of wells in 384-well plates. Its design ensures that there will be no cross-illumination between microwells in 96-well plates, and an active cooling system minimizes sample heating during light-intensive experiments. This protocol details the steps to assemble, test, and use the optoPlate-96. The device can be fully assembled without specialized equipment beyond a 3D printer and a laser cutter, starting from open-source design files and commercially available components. We then describe how to perform a typical optogenetics experiment using the optoPlate-96 to stimulate adherent mammalian cells. Although optoPlate-96 experiments are compatible with any plate-based readout, we describe analysis using quantitative single-cell immunofluorescence. This workflow thus allows complex optogenetics experiments (independent control of stimulation colors, intensity, dynamics, and time points) with high-dimensional outputs at single-cell resolution. Starting from 3D-printed and laser-cut components, assembly and testing of the optoPlate-96 can be accomplished in 3-4 h, at a cost of ~$600. A full optoPlate-96 experiment with immunofluorescence analysis can be performed within ~24 h, but this estimate is variable depending on the cell type and experimental parameters.

NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop.

blue CRY2olig NIH/3T3 Signaling cascade control
Sci Signal, 30 Apr 2019 DOI: 10.1126/scisignal.aau3568 Link to full text
Abstract: Over the last decade, multiple studies have shown that signaling proteins activated in different temporal patterns, such as oscillatory, transient, and sustained, can result in distinct gene expression patterns or cell fates. However, the molecular events that ensure appropriate stimulus- and dose-dependent dynamics are not often understood and are difficult to investigate. Here, we used single-cell analysis to dissect the mechanisms underlying the stimulus- and dose-encoding patterns in the innate immune signaling network. We found that Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling dynamics relied on a dose-dependent, autoinhibitory loop that rendered cells refractory to further stimulation. Using inducible gene expression and optogenetics to perturb the network at different levels, we identified IL-1R-associated kinase 1 (IRAK1) as the dose-sensing node responsible for limiting signal flow during the innate immune response. Although the kinase activity of IRAK1 was not required for signal propagation, it played a critical role in inhibiting the nucleocytoplasmic oscillations of the transcription factor NF-κB. Thus, protein activities that may be "dispensable" from a topological perspective can nevertheless be essential in shaping the dynamic response to the external environment.

Neurotrophin receptor tyrosine kinases regulated with near-infrared light.

blue red DrBphP TULIP CHO HeLa mouse in vivo NIH/3T3 PC6-3 SH-SY5Y U-87 MG Signaling cascade control Multichromatic
Nat Commun, 8 Mar 2019 DOI: 10.1038/s41467-019-08988-3 Link to full text
Abstract: Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.

Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.

blue CRY2/CRY2 iLID HEK293 HEK293T NIH/3T3 U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.057 Link to full text
Abstract: Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechanoactive chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

blue iLID C. elegans in vivo HEK293 HeLa NIH/3T3 S. cerevisiae U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.048 Link to full text
Abstract: Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, ‘‘Corelets,’’ and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes.

Membrane dynamics induced by a PIP3 optogenetic tool.

blue CRY2/CIB1 Cos-7 HEK293 NIH/3T3 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Anal Sci, 2 Nov 2018 DOI: 10.2116/analsci.18sdp06 Link to full text
Abstract: Membrane dynamic structures such as filopodia, lamellipodia, and ruffles have important cellular functions in phagocytosis and cell motility, and in pathological states such as cancer metastasis. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is a crucial lipid that regulates PIP3 dynamics. Investigations of how PIP3 is involved in these functions have mainly relied on pharmacological interventions, and therefore have not generated detailed spatiotemporal information of membrane dynamics upon PIP3 production. In the present study, we applied an optogenetic approach using the CRY2–CIBN system. Using this system, we revealed that local PIP3 generation induced directional cell motility and membrane ruffles in COS7 cells. Furthermore, combined with structured illumination microscopy (SIM), membrane dynamics were investigated with high spatial resolution. We observed PIP3-induced apical ruffles and unique actin fiber behavior in that a single actin fiber protruded from the plasma membrane was taken up into the plasma membrane without depolymerization. This system has the potential to investigate other high-level cell motility and dynamic behaviors such as cancer cell invasion and wound healing with high spatiotemporal resolution, and could provide new insights of biological sciences for membrane dynamics.

Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.

blue AsLOV2 EL222 CHO-K1 Cos-7 HEK293 HEK293T HeLa isolated MEFs NIH/3T3 Cell death
Sci Rep, 9 Oct 2018 DOI: 10.1038/s41598-018-32929-7 Link to full text
Abstract: Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.

Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway.

red PhyB/PIF6 16HBE14o- BEAS-2B HCC827 II-18 NCI-H1395 NCI-H441 NIH/3T3 Signaling cascade control Cell cycle control
Science, 31 Aug 2018 DOI: 10.1126/science.aao3048 Link to full text
Abstract: The Ras-Erk (extracellular signal-regulated kinase) pathway encodes information in its dynamics; the duration and frequency of Erk activity can specify distinct cell fates. To enable dynamic encoding, temporal information must be accurately transmitted from the plasma membrane to the nucleus. We used optogenetic profiling to show that both oncogenic B-Raf mutations and B-Raf inhibitors can cause corruption of this transmission, so that short pulses of input Ras activity are distorted into abnormally long Erk outputs. These changes can reshape downstream transcription and cell fates, resulting in improper decisions to proliferate. These findings illustrate how altered dynamic signal transmission properties, and not just constitutively increased signaling, can contribute to cell proliferation and perhaps cancer, and how optogenetic profiling can dissect mechanisms of signaling dysfunction in disease.
Submit a new publication to our database