Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 54 results
1.

A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.

blue CRY2/CIB1 S. cerevisiae
Biotechnol Bioeng, 2 Dec 2019 DOI: 10.1002/bit.27234 Link to full text
Abstract: Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light-intensity and duty-cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This work allows for rapid generation and prototyping of optogenetic circuits to control gene expression in Saccharomyces cerevisiae. This article is protected by copyright. All rights reserved.
2.

Optogenetic Repressors of Gene Expression in Yeasts Using Light-Controlled Nuclear Localization.

blue AsLOV2 S. cerevisiae
CMBE, 24 Sep 2019 DOI: 10.1007/s12195-019-00598-9 Link to full text
Abstract: Introduction: Controlling gene expression is a fundamental goal of basic and synthetic biology because it allows insight into cellular function and control of cellular activity. We explored the possibility of generating an optogenetic repressor of gene expression in the model organism Saccharomyces cerevisiae by using light to control the nuclear localization of nuclease-dead Cas9, dCas9. Methods: The dCas9 protein acts as a repressor for a gene of interest when localized to the nucleus in the presence of an appropriate guide RNA (sgRNA). We engineered dCas9, the mammalian transcriptional repressor Mxi1, and an optogenetic tool to control nuclear localization (LINuS) as parts in an existing yeast optogenetic toolkit. This allowed expression cassettes containing novel dCas9 repressor configurations and guide RNAs to be rapidly constructed and integrated into yeast. Results: Our library of repressors displays a range of basal repression without the need for inducers or promoter modification. Populations of cells containing these repressors can be combined to generate a heterogeneous population of yeast with a 100-fold expression range. We find that repression can be dialed modestly in a light dose- and intensity-dependent manner. We used this library to repress expression of the lanosterol 14-alpha-demethylase Erg11, generating yeast with a range of sensitivity to the important antifungal drug fluconazole. Conclusions: This toolkit will be useful for spatiotemporal perturbation of gene expression in Saccharomyces cerevisiae. Additionally, we believe that the simplicity of our scheme will allow these repressors to be easily modified to control gene expression in medically relevant fungi, such as pathogenic yeasts.
3.

Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway.

blue AtLOV2 S. cerevisiae Organelle manipulation
Mol Biol Cell, 14 Aug 2019 DOI: 10.1091/mbc.e18-12-0754 Link to full text
Abstract: Protein quality mechanisms are fundamental for proteostasis of eukaryotic cells. Endoplasmic reticulum-associated degradation (ERAD) is a well-studied pathway that ensures quality control of secretory and endoplasmic reticulum (ER)-resident proteins. Different branches of ERAD are involved in degradation of malfolded secretory proteins, depending on the localization of the misfolded part, the ER lumen (ERAD-L), the ER membrane (ERAD-M), and the cytosol (ERAD-C). Here we report that modification of several ER transmembrane proteins with the photosensitive degron (psd) module resulted in light-dependent degradation of the membrane proteins via the ERAD-C pathway. We found dependency on the ubiquitylation machinery including the ubiquitin-activating enzyme Uba1, the ubiquitin--conjugating enzymes Ubc6 and Ubc7, and the ubiquitin-protein ligase Doa10. Moreover, we found involvement of the Cdc48 AAA-ATPase complex members Ufd1 and Npl4, as well as the proteasome, in degradation of Sec62-myc-psd. Thus, our work shows that ERAD-C substrates can be systematically generated via synthetic degron constructs, which facilitates future investigations of the ERAD-C pathway.
4.

Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase.

blue CRY2/CIB1 S. cerevisiae S. pombe Control of cytoskeleton / cell motility / cell shape
bioRxiv, 22 Jul 2019 DOI: 10.1101/710855 Link to full text
Abstract: The small GTPase Cdc42 is critical for cell polarization. Scaffold-mediated positive feedback regulation was proposed to mediate symmetry-breaking to a single active zone in budding yeast cells. In rod-shaped fission yeast S. pombe cells, active Cdc42-GTP localizes to both cell poles, where it promotes bipolar growth. Here, we implement the CRY2-CIBN optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the GEF Scd1, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is completely bypassed and positive feedback restored by an engineered interaction between the GEF and a Cdc42 effector, the Pak1 kinase. Remarkably, such re-wired cells are viable and grow in a bipolar manner even when lacking otherwise essential Cdc42 activators. Interestingly, these cells reveal that Ras1 GTPase plays a dual role in localizing and activating the GEF, thus potentiating the feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, is minimally required for rod-shape formation.
5.

Cell-in-the-loop pattern formation with optogenetically emulated cell-to-cell signaling.

blue EL222 S. cerevisiae
bioRxiv, 22 Jun 2019 DOI: 10.1101/679597 Link to full text
Abstract: Designing and implementing synthetic biological pattern formation remains a challenge due to underlying theoretical complexity as well as the difficulty of engineering multicellular networks bio-chemically. Here, we introduce a “cell-in-the-loop” approach where living cells interact through in silico signaling, establishing a new testbed to interrogate theoretical principles when internal cell dynamics are incorporated rather than modeled. We present a theory that offers an easy-to-use test to predict the emergence of contrasting patterns in gene expression among laterally inhibiting cells. Guided by the theory, we experimentally demonstrated spontaneous checkerboard patterning in an optogenetic setup where cell-to-cell signaling was emulated with light inputs calculated in silico from real-time gene expression measurements. The scheme successfully produced spontaneous, persistent checkerboard patterns for systems of sixteen patches, in quantitative agreement with theoretical predictions. Our research highlights how tools from dynamical systems theory may inform our understanding of patterning, and illustrates the potential of cell-in-the-loop for engineering synthetic multicellular systems.
6.

A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.

blue CRY2/CIB1 S. cerevisiae
bioRxiv, 16 Jun 2019 DOI: 10.1101/663393 Link to full text
Abstract: Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control and integrate it with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light-intensity and duty-cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This work allows for rapid generation and prototyping of optogenetic circuits to control gene expression in Saccharomyces cerevisiae.
7.

Light-based control of metabolic flux through assembly of synthetic organelles.

blue CRY2/CRY2 CRY2olig PixD/PixE S. cerevisiae Organelle manipulation
Nat Chem Biol, 13 May 2019 DOI: 10.1038/s41589-019-0284-8 Link to full text
Abstract: To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.
8.

Optogenetic downregulation of protein levels with an ultrasensitive switch.

blue AsLOV2 AtLOV2 iLID LOVTRAP S. cerevisiae Cell cycle control Transgene expression
ACS Synth Biol, 8 Apr 2019 DOI: 10.1021/acssynbio.8b00471 Link to full text
Abstract: Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, e.g. for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes as well as fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.
9.

A yeast system for discovering optogenetic inhibitors of eukaryotic translation initiation.

blue cyan AsLOV2 Dronpa145K/N PYP RsLOV S. cerevisiae
ACS Synth Biol, 22 Mar 2019 DOI: 10.1021/acssynbio.8b00386 Link to full text
Abstract: The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis non-invasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-depednednt translation initiation in a mechanistically defined manner.
10.

Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics.

blue LOVTRAP S. cerevisiae
bioRxiv, 15 Feb 2019 DOI: 10.1101/548255 Link to full text
Abstract: The dynamic translocation of transcription factors (TFs) in and out of the nucleus is thought to encode information, such as the identity of a stimulus. A corollary is the idea that gene promoters can decode different dynamic TF translocation patterns. Testing this TF encoding/promoter decoding hypothesis requires tools that allow direct control of TF dynamics without the pleiotropic effects associated with general perturbations. In this work, we present CLASP (Controllable Light Activated Shuttling and Plasma membrane sequestration), a tool that enables precise, modular, and reversible control of TF localization using a combination of two optimized LOV2 optogenetic constructs. The first sequesters the cargo in the dark at the plasma membrane and releases it upon exposure to blue light, while light exposure of the second reveals a nuclear localization sequence that shuttles the released cargo to the nucleus. CLASP achieves minute-level resolution, reversible translocation of many TF cargos, large dynamic range, and tunable target gene expression. Using CLASP, we investigate the relationship between Crz1, a naturally pulsatile TF, and its cognate promoters. We establish that some Crz1 target genes respond more efficiently to pulsatile TF inputs than to continuous inputs, while others exhibit the opposite behavior. We show using computational modeling that efficient gene expression in response to short pulsing requires fast promoter activation and slow inactivation and that the opposite phenotype can ensue from a multi-stage promoter activation, where a transition in the first stage is thresholded. These data directly demonstrate differential interpretation of TF pulsing dynamics by different genes, and provide plausible models that can achieve these phenotypes.
11.

A size-invariant bud-duration timer enables robustness in yeast cell size control.

red PhyB/PIF6 S. cerevisiae Cell cycle control
PLoS ONE, 21 Dec 2018 DOI: 10.1371/journal.pone.0209301 Link to full text
Abstract: Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant 'timer' specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.
12.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

blue iLID C. elegans in vivo HEK293 HeLa NIH/3T3 S. cerevisiae U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.048 Link to full text
Abstract: Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, ‘‘Corelets,’’ and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes.
13.

Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.

blue AsLOV2 HeLa in vitro S. cerevisiae Epigenetic modification
ACS Synth Biol, 15 Nov 2018 DOI: 10.1021/acssynbio.8b00368 Link to full text
Abstract: Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
14.

Real-Time Genetic Compensation Defines the Dynamic Demands of Feedback Control.

blue CRY2/CIB1 S. cerevisiae Signaling cascade control
Cell, 18 Oct 2018 DOI: 10.1016/j.cell.2018.09.044 Link to full text
Abstract: Biological signaling networks use feedback control to dynamically adjust their operation in real time. Traditional static genetic methods such as gene knockouts or rescue experiments can often identify the existence of feedback interactions but are unable to determine what feedback dynamics are required. Here, we implement a new strategy, closed-loop optogenetic compensation (CLOC), to address this problem. Using a custom-built hardware and software infrastructure, CLOC monitors, in real time, the output of a pathway deleted for a feedback regulator. A minimal model uses these measurements to calculate and deliver-on the fly-an optogenetically enabled transcriptional input designed to compensate for the effects of the feedback deletion. Application of CLOC to the yeast pheromone response pathway revealed surprisingly distinct dynamic requirements for three well-studied feedback regulators. CLOC, a marriage of control theory and traditional genetics, presents a broadly applicable methodology for defining the dynamic function of biological feedback regulators.
15.

A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells.

blue CRY2/CIB1 VVD S. cerevisiae Cell cycle control Transgene expression
ACS Synth Biol, 4 Sep 2018 DOI: 10.1021/acssynbio.8b00180 Link to full text
Abstract: Light is a highly attractive actuator that allows spatiotemporal control of diverse cellular activities. In this study, we developed a single-component light-switchable gene expression system for yeast cells, termed yLightOn system. The yLightOn system is independent of exogenous cofactors, and exhibits more than a 500-fold ON/OFF ratio, extremely low leakage, fast expression kinetics, and high spatial resolution. We demonstrated the usefulness of the yLightOn system in regulating cell growth and cell cycle by stringently controlling the expression of His3 and ΔN Sic1 genes, respectively. Furthermore, we engineered a bidirectional expression module that allows the simultaneous control of the expression of two genes by light. With ClpX and ClpP as the reporters, the fast, quantitative, and spatially specific degradation of ssrA-tagged protein was observed. We suggest that this single-component optogenetic system will be immensely helpful in understanding cellular gene regulatory networks and in the design of robust genetic circuits for synthetic biology.
16.

Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation.

blue EL222 S. cerevisiae
Nat Commun, 30 Aug 2018 DOI: 10.1038/s41467-018-05882-2 Link to full text
Abstract: Many natural transcription factors are regulated in a pulsatile fashion, but it remains unknown whether synthetic gene expression systems can benefit from such dynamic regulation. Here we find, using a fast-acting, optogenetic transcription factor in Saccharomyces cerevisiae, that dynamic pulsatile signals reduce cell-to-cell variability in gene expression. We then show that by encoding such signals into a single input, expression mean and variability can be independently tuned. Further, we construct a light-responsive promoter library and demonstrate how pulsatile signaling also enables graded multi-gene regulation at fixed expression ratios, despite differences in promoter dose-response characteristics. Pulsatile regulation can thus lead to beneficial functional behaviors in synthetic biological systems, which previously required laborious optimization of genetic parts or the construction of synthetic gene networks.
17.

Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.

blue NcWC1-LOV VVD S. cerevisiae Transgene expression Control of cell-cell / cell-material interactions
MBio, 31 Jul 2018 DOI: 10.1128/mbio.00626-18 Link to full text
Abstract: Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV's ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms.IMPORTANCE Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.
18.

Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids.

blue BcLOV4 HEK293T in vitro S. cerevisiae
Proc Natl Acad Sci USA, 31 Jul 2018 DOI: 10.1073/pnas.1802832115 Link to full text
Abstract: We report natural light-oxygen-voltage (LOV) photoreceptors with a blue light-switched, high-affinity (KD ∼ 10-7 M), and direct electrostatic interaction with anionic phospholipids. Membrane localization of one such photoreceptor, BcLOV4 from Botrytis cinerea, is directly coupled to its flavin photocycle, and is mediated by a polybasic amphipathic helix in the linker region between the LOV sensor and its C-terminal domain of unknown function (DUF), as revealed through a combination of bioinformatics, computational protein modeling, structure-function studies, and optogenetic assays in yeast and mammalian cell line expression systems. In model systems, BcLOV4 rapidly translocates from the cytosol to plasma membrane (∼1 second). The reversible electrostatic interaction is nonselective among anionic phospholipids, exhibiting binding strengths dependent on the total anionic content of the membrane without preference for a specific headgroup. The in vitro and cellular responses were also observed with a BcLOV4 homolog and thus are likely to be general across the dikarya LOV class, whose members are associated with regulator of G-protein signaling (RGS) domains. Natural photoreceptors are not previously known to directly associate with membrane phospholipids in a light-dependent manner, and thus this work establishes both a photosensory signal transmission mode and a single-component optogenetic tool with rapid membrane localization kinetics that approaches the diffusion limit.
19.

L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.

red PhyB/PIF3 S. cerevisiae
Nat Commun, 22 May 2018 DOI: 10.1038/s41467-017-02208-6 Link to full text
Abstract: The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a light-controlled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome re-engineering project Sc2.0 or in other recombination-based systems.
20.

An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation.

blue EL222 S. cerevisiae
Mol Cell, 17 May 2018 DOI: 10.1016/j.molcel.2018.04.012 Link to full text
Abstract: Transcription is a highly regulated and inherently stochastic process. The complexity of signal transduction and gene regulation makes it challenging to analyze how the dynamic activity of transcriptional regulators affects stochastic transcription. By combining a fast-acting, photo-regulatable transcription factor with nascent RNA quantification in live cells and an experimental setup for precise spatiotemporal delivery of light inputs, we constructed a platform for the real-time, single-cell interrogation of transcription in Saccharomyces cerevisiae. We show that transcriptional activation and deactivation are fast and memoryless. By analyzing the temporal activity of individual cells, we found that transcription occurs in bursts, whose duration and timing are modulated by transcription factor activity. Using our platform, we regulated transcription via light-driven feedback loops at the single-cell level. Feedback markedly reduced cell-to-cell variability and led to qualitative differences in cellular transcriptional dynamics. Our platform establishes a flexible method for studying transcriptional dynamics in single cells.
21.

Optogenetic regulation of engineered cellular metabolism for microbial chemical production.

blue EL222 S. cerevisiae Transgene expression
Nature, 21 Mar 2018 DOI: 10.1038/nature26141 Link to full text
Abstract: The optimization of engineered metabolic pathways requires careful control over the levels and timing of metabolic enzyme expression. Optogenetic tools are ideal for achieving such precise control, as light can be applied and removed instantly without complex media changes. Here we show that light-controlled transcription can be used to enhance the biosynthesis of valuable products in engineered Saccharomyces cerevisiae. We introduce new optogenetic circuits to shift cells from a light-induced growth phase to a darkness-induced production phase, which allows us to control fermentation with only light. Furthermore, optogenetic control of engineered pathways enables a new mode of bioreactor operation using periodic light pulses to tune enzyme expression during the production phase of fermentation to increase yields. Using these advances, we control the mitochondrial isobutanol pathway to produce up to 8.49 ± 0.31 g l-1of isobutanol and 2.38 ± 0.06 g l-1of 2-methyl-1-butanol micro-aerobically from glucose. These results make a compelling case for the application of optogenetics to metabolic engineering for the production of valuable products.
22.

Light-dependent cytoplasmic recruitment enhances the dynamic range of a nuclear import photoswitch.

blue LOVTRAP C. elegans in vivo HeLa S. cerevisiae Developmental processes
Chembiochem, 14 Feb 2018 DOI: 10.1002/cbic.201700681 Link to full text
Abstract: Cellular signal transduction is often regulated at multiple steps in order to achieve more complex logic or precise control of a pathway. For instance, some signaling mechanisms couple allosteric activation with localization to achieve high signal to noise. Here, we create a system for light activated nuclear import that incorporates two levels of control. It consists of a nuclear import photoswitch, Light Activated Nuclear Shuttle (LANS), and a protein engineered to preferentially interact with LANS in the dark, Zdk2. First, Zdk2 is tethered to a location in the cytoplasm, which sequesters LANS in the dark. Second, LANS incorporates a nuclear localization signal (NLS) that is sterically blocked from binding to the nuclear import machinery in the dark. When activated with light, LANS both dissociates from its tethered location and exposes its NLS, which leads to nuclear accumulation. We demonstrate that this coupled system improves the dynamic range of LANS in mammalian cells, yeast, and C. elegans and provides tighter control of transcription factors that have been fused to LANS.
23.

PhiReX: a programmable and red light-regulated protein expression switch for yeast.

red PhyB/PIF3 S. cerevisiae
Nucleic Acids Res, 26 Jul 2017 DOI: 10.1093/nar/gkx610 Link to full text
Abstract: Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
24.

Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization.

blue TULIP S. cerevisiae Control of cytoskeleton / cell motility / cell shape
Elife, 6 Jul 2017 DOI: 10.7554/elife.26722 Link to full text
Abstract: Cell polarization underlies many cellular and organismal functions. The GTPase Cdc42 orchestrates polarization in many contexts. In budding yeast, polarization is associated with a focus of Cdc42•GTP which is thought to self sustain by recruiting a complex containing Cla4, a Cdc42-binding effector, Bem1, a scaffold, and Cdc24, a Cdc42 GEF. Using optogenetics, we probe yeast polarization and find that local recruitment of Cdc24 or Bem1 is sufficient to induce polarization by triggering self-sustaining Cdc42 activity. However, the response to these perturbations depends on the recruited molecule, the cell cycle stage, and existing polarization sites. Before cell cycle entry, recruitment of Cdc24, but not Bem1, induces a metastable pool of Cdc42 that is sustained by positive feedback. Upon Cdk1 activation, recruitment of either Cdc24 or Bem1 creates a stable site of polarization that induces budding and inhibits formation of competing sites. Local perturbations have therefore revealed unexpected features of polarity establishment.
25.

A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

blue AsLOV2 HEK293T in vitro mouse in vivo rat cortical neurons S. cerevisiae Transgene expression
Nat Biotechnol, 26 Jun 2017 DOI: 10.1038/nbt.3909 Link to full text
Abstract: Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.
Submit a new publication to our database