Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Engineered illumination devices for optogenetic control of cellular signaling dynamics.

blue CRY2/CRY2 hESCs Signaling cascade control Developmental processes
bioRxiv, 19 Jun 2019 DOI: 10.1101/675892 Link to full text
Abstract: Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic, spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics impact cell behavior. Here we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using novel engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). The optical design of LAVA devices was optimized for uniform illumination of multi-well cell culture plates to enable high-throughput, spatiotemporal optogenetic activation of signaling pathways and protein-protein interactions. Using the LAVA devices, variation in light intensity induced a dose-dependent response in optoWnt activation and downstream Brachyury expression in human embryonic stem cells (hESCs). Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models embryonic presentation of Wnt signals in vitro. The engineered LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
2.

Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells.

blue CRY2/CRY2 hESCs human IPSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell differentiation
bioRxiv, 10 Jun 2019 DOI: 10.1101/665695 Link to full text
Abstract: The processes of cell proliferation, differentiation, migration, and self-organization during early embryonic development are governed by dynamic, spatially and temporally varying morphogen signals. Analogous tissue patterns emerge spontaneously in embryonic stem cell (ESC) models for gastrulation, but mechanistic insight into this self-organization is limited by a lack of molecular methods to precisely control morphogen signal dynamics. Here we combine optogenetic stimulation and single-cell imaging approaches to study self-organization of human pluripotent stem cells. Precise control of morphogen signal dynamics, achieved through activation of canonical Wnt/β-catenin signaling over a broad high dynamic range (>500-fold) using an optoWnt optogenetic system, drove broad transcriptional changes and mesendoderm differentiation of human ESCs at high efficiency (>95% cells). Furthermore, activating Wnt signaling in subpopulations of ESCs in 2D and 3D cultures induced cell self-organization and morphogenesis reminiscent of human gastrulation, including changes in cell migration and epithelial to mesenchymal transition. Our findings thus reveal an instructive role for Wnt in directing cell patterning in this ESC model for gastrulation.
3.

Optogenetic control of endogenous Ca(2+) channels in vivo.

blue AsLOV2 CRY2/CRY2 Cos-7 HEK293 HeLa hESCs HUVEC mouse astrocytes mouse hippocampal slices mouse in vivo NIH/3T3 primary mouse hippocampal neurons zebrafish in vivo Immediate control of second messengers
Nat Biotechnol, 14 Sep 2015 DOI: 10.1038/nbt.3350 Link to full text
Abstract: Calcium (Ca(2+)) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis. However, study of Ca(2+) responses has been hampered by technological limitations of existing Ca(2+)-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca(2+) levels through activation of Ca(2+)-selective endogenous Ca(2+) release-activated Ca(2+) (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca(2+) levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca(2+)-associated processes and facilitate screening for drug candidates that antagonize Ca(2+) signals.
Submit a new publication to our database