Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results

Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells.

red PhyB/PIF6 human T cells Extracellular optogenetics
bioRxiv, 15 Apr 2022 DOI: 10.1101/2022.04.15.488452 Link to full text
Abstract: Cells perceive overtime complex sequences of receptor stimulation that they integrate to mount an appropriate response. Yet, the influence of signal dynamics on cell responses has been poorly characterized due to technical limitations. Here, we present a generalizable approach to control receptor stimulation on unmodified primary cells. Indeed, for applications on primary murine T cells, we have engineered the LiTe system, a new recombinant optogenetics-based Light-inducible T cell engager which allows tunable and reversible spatiotemporal control of the T Cell Receptor (TCR) stimulation. We also provided in vitro evidence that this system enables efficient T cell activation with light, leading to cytokine secretion or tumor cell killing. Using specific time-gated stimulations, we have been able to orient the outcome of the activation of T cells. Overall, the LiTe system constitutes a versatile ON/OFF molecular switch allowing to decipher the cellular response to stimulation dynamics. Its original control over T cell activation opens new avenues for future precision cancer immunotherapy.

Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety.

blue CRY2/CIB1 iLID human T cells Jurkat mouse T cells Signaling cascade control
Nat Nanotechnol, 25 Oct 2021 DOI: 10.1038/s41565-021-00982-5 Link to full text
Abstract: Chimeric antigen receptor (CAR) T cell-based immunotherapy, approved by the US Food and Drug Administration, has shown curative potential in patients with haematological malignancies. However, owing to the lack of control over the location and duration of the anti-tumour immune response, CAR T cell therapy still faces safety challenges arising from cytokine release syndrome and on-target, off-tumour toxicity. Herein, we present the design of light-switchable CAR (designated LiCAR) T cells that allow real-time phototunable activation of therapeutic T cells to precisely induce tumour cell killing. When coupled with imaging-guided, surgically removable upconversion nanoplates that have enhanced near-infrared-to-blue upconversion luminescence as miniature deep-tissue photon transducers, LiCAR T cells enable both spatial and temporal control over T cell-mediated anti-tumour therapeutic activity in vivo with greatly mitigated side effects. Our nano-optogenetic immunomodulation platform not only provides a unique approach to interrogate CAR-mediated anti-tumour immunity, but also sets the stage for developing precision medicine to deliver personalized anticancer therapy.

Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering.

blue AsLOV2 cpLID cpLOV2 cpLOVTRAP iLID LOVTRAP HEK293T HeLa human T cells in vitro Jurkat mouse in vivo NIH/3T3
Nat Chem Biol, 6 May 2021 DOI: 10.1038/s41589-021-00792-9 Link to full text
Abstract: Plant-based photosensors, such as the light-oxygen-voltage sensing domain 2 (LOV2) from oat phototropin 1, can be modularly wired into cell signaling networks to remotely control protein activity and physiological processes. However, the applicability of LOV2 is hampered by the limited choice of available caging surfaces and its preference to accommodate the effector domains downstream of the C-terminal Jα helix. Here, we engineered a set of LOV2 circular permutants (cpLOV2) with additional caging capabilities, thereby expanding the repertoire of genetically encoded photoswitches to accelerate the design of optogenetic devices. We demonstrate the use of cpLOV2-based optogenetic tools to reversibly gate ion channels, antagonize CRISPR-Cas9-mediated genome engineering, control protein subcellular localization, reprogram transcriptional outputs, elicit cell suicide and generate photoactivatable chimeric antigen receptor T cells for inducible tumor cell killing. Our approach is widely applicable for engineering other photoreceptors to meet the growing need of optogenetic tools tailored for biomedical and biotechnological applications.

Quantifying persistence in the T-cell signaling network using an optically controllable antigen receptor.

blue LOVTRAP HEK293T human T cells Jurkat Signaling cascade control
Mol Syst Biol, May 2021 DOI: 10.15252/msb.202010091 Link to full text
Abstract: T cells discriminate between healthy and infected cells with remarkable sensitivity when mounting an immune response, which is hypothesized to depend on T cells combining stimuli from multiple antigen-presenting cell interactions into a more potent response. To quantify the capacity for T cells to accomplish this, we have developed an antigen receptor that is optically tunable within cell conjugates, providing control over the duration, and intensity of intracellular T-cell signaling. We observe limited persistence within the T-cell intracellular network on disruption of receptor input, with signals dissipating entirely in ~15 min, and directly show sustained proximal receptor signaling is required to maintain gene transcription. T cells thus primarily accumulate the outputs of gene expression rather than integrate discrete intracellular signals. Engineering optical control in a clinically relevant chimeric antigen receptor (CAR), we show that this limited signal persistence can be exploited to increase CAR-T cell activation threefold using pulsatile stimulation. Our results are likely to apply more generally to the signaling dynamics of other cellular networks.

T cells selectively filter oscillatory signals on the minutes timescale.

blue iLID human T cells Signaling cascade control
Proc Natl Acad Sci U S A, 2 Mar 2021 DOI: 10.1073/pnas.2019285118 Link to full text
Abstract: T cells experience complex temporal patterns of stimulus via receptor-ligand-binding interactions with surrounding cells. From these temporal patterns, T cells are able to pick out antigenic signals while establishing self-tolerance. Although features such as duration of antigen binding have been examined, our understanding of how T cells interpret signals with different frequencies or temporal stimulation patterns is relatively unexplored. We engineered T cells to respond to light as a stimulus by building an optogenetically controlled chimeric antigen receptor (optoCAR). We discovered that T cells respond to minute-scale oscillations of activation signal by stimulating optoCAR T cells with tunable pulse trains of light. Systematically scanning signal oscillation period from 1 to 150 min revealed that expression of CD69, a T cell activation marker, reached a local minimum at a period of ∼25 min (corresponding to 5 to 15 min pulse widths). A combination of inhibitors and genetic knockouts suggest that this frequency filtering mechanism lies downstream of the Erk signaling branch of the T cell response network and may involve a negative feedback loop that diminishes Erk activity. The timescale of CD69 filtering corresponds with the duration of T cell encounters with self-peptide-presenting APCs observed via intravital imaging in mice, indicating a potential functional role for temporal filtering in vivo. This study illustrates that the T cell signaling machinery is tuned to temporally filter and interpret time-variant input signals in discriminatory ways.

Engineering light-controllable CAR T cells for cancer immunotherapy.

blue AsLOV2 CRY2/CIB1 HEK293T human T cells Jurkat mouse in vivo Endogenous gene expression
Sci Adv, 19 Feb 2020 DOI: 10.1126/sciadv.aay9209 Link to full text
Abstract: T cells engineered to express chimeric antigen receptors (CARs) can recognize and engage with target cancer cells with redirected specificity for cancer immunotherapy. However, there is a lack of ideal CARs for solid tumor antigens, which may lead to severe adverse effects. Here, we developed a light-inducible nuclear translocation and dimerization (LINTAD) system for gene regulation to control CAR T activation. We first demonstrated light-controllable gene expression and functional modulation in human embryonic kidney 293T and Jurkat T cell lines. We then improved the LINTAD system to achieve optimal efficiency in primary human T cells. The results showed that pulsed light stimulations can activate LINTAD CAR T cells with strong cytotoxicity against target cancer cells, both in vitro and in vivo. Therefore, our LINTAD system can serve as an efficient tool to noninvasively control gene activation and activate inducible CAR T cells for precision cancer immunotherapy.

Reversible induction of mitophagy by an optogenetic bimodular system.

blue iLID ETNA HEK293T HeLa human T cells zebrafish in vivo Organelle manipulation
Nat Commun, 4 Apr 2019 DOI: 10.1038/s41467-019-09487-1 Link to full text
Abstract: Autophagy-mediated degradation of mitochondria (mitophagy) is a key process in cellular quality control. Although mitophagy impairment is involved in several patho-physiological conditions, valuable methods to induce mitophagy with low toxicity in vivo are still lacking. Herein, we describe a new optogenetic tool to stimulate mitophagy, based on light-dependent recruitment of pro-autophagy protein AMBRA1 to mitochondrial surface. Upon illumination, AMBRA1-RFP-sspB is efficiently relocated from the cytosol to mitochondria, where it reversibly mediates mito-aggresome formation and reduction of mitochondrial mass. Finally, as a proof of concept of the biomedical relevance of this method, we induced mitophagy in an in vitro model of neurotoxicity, fully preventing cell death, as well as in human T lymphocytes and in zebrafish in vivo. Given the unique features of this tool, we think it may turn out to be very useful for a wide range of both therapeutic and research applications.
Submit a new publication to our database