Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 81 results
1.

Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T HeLa in vitro
ACS Synth Biol, 17 Dec 2019 DOI: 10.1021/acssynbio.9b00277 Link to full text
Abstract: Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.
2.

Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.

red PhyB/PIF3 PhyB/PIF6 CHO-K1 in vitro NIH/3T3
Commun Biol, 2 Dec 2019 DOI: 10.1038/s42003-019-0687-9 Link to full text
Abstract: Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.
3.

Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization.

blue LOVTRAP in vitro
Ann Biomed Eng, 13 Nov 2019 DOI: 10.1007/s10439-019-02407-w Link to full text
Abstract: Hydrogel materials have become a versatile platform for in vitro cell culture due to their ability to simulate many aspects of native tissues. However, precise spatiotemporal presentation of peptides and other biomolecules has remained challenging. Here we report the use of light-sensing proteins (LSPs), more commonly used in optogenetics research, as light-activated reversible binding sites within synthetic poly(ethylene glycol) (PEG) hydrogels. We used LOVTRAP, a two component LSP system consisting of LOV2, a protein domain that can cycle reversibly between "light" and "dark" conformations in response to blue light, and a z-affibody, Zdark (Zdk), that binds the dark state of LOV2, to spatiotemporally control the presentation of a recombinant protein within PEG hydrogels. By immobilizing LOV2 within PEG gels, we were able to capture a recombinant fluorescent protein (used as a model biomolecule) containing a Zdk domain, and then release the Zdk fusion protein using blue light. Zdk was removed from LOV2-containing PEG gels using focused blue light, resulting in a 30% reduction of fluorescence compared to unexposed regions of the gel. Additionally, the reversible binding capability of LOVTRAP was observed in our system, enabling our LOV2 gels to capture and release Zdk at least three times. By adding a Zdk domain to a recombinant peptide or protein, dynamic, spatially constrained displays of non-diffusing ligands within a PEG gel could feasibly be achieved using LOV2.
4.

Production of Phytochromes by High-Cell-Density E. coli Fermentation.

red Cph1 PhyB/PIF6 in vitro
ACS Synth Biol, 26 Sep 2019 DOI: 10.1021/acssynbio.9b00267 Link to full text
Abstract: Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.
5.

Near-infrared optogenetic genome engineering based on photon upconversion hydrogels.

blue Magnets in vitro
Angew Chem Int Ed Engl, 23 Sep 2019 DOI: 10.1002/anie.201911025 Link to full text
Abstract: Photon upconversion (UC) from near-infrared (NIR) light to visible light has enabled optogenetic manipulations in deep tissues. However, materials for NIR optogenetics have been limited to inorganic UC nanoparticles. Extension to organic triplet-triplet annihilation (TTA)-based UC systems would innovate NIR optogenetics toward the use of biocompatible materials placed at a desired position. Here, we report the first example of NIR light-triggered optogenetics by using TTA-UC hydrogels. To achieve triplet sensitization even in the highly viscous hydrogel matrices, a NIR-absorbing complex is covalently linked with energy-pooling acceptor chromophores, which significantly elongates the donor triplet lifetime. The donor and acceptor are solubilized in hydrogels formed from biocompatible Pluronic F127 micelles, and we find that the additional heat treatment endows remarkable oxygen-tolerant property to the excited triplets in the hydrogel. Combined with photoactivatable Cre recombinase (PA-Cre) technology, NIR light stimulation successfully performs genome engineering such as hippocampal dendritic spine formation involved in learning and long-term memory.
6.

Genetically Encoded Photocleavable Linkers for Patterned Protein Release from Biomaterials.

violet PhoCl in vitro
J Am Chem Soc, 17 Sep 2019 DOI: 10.1021/jacs.9b07239 Link to full text
Abstract: Given the critical role that proteins play in almost all biological processes, there is great interest in controlling their presentation within and release from biomaterials. Despite such outstanding enthusiasm, previously developed strategies in this regard result in ill-defined and heterogeneous populations with substantially decreased activity, precluding their successful application to fragile species including growth factors. Here, we introduce a modular and scalable method for creating monodisperse, genetically encoded chimeras that enable bioactive proteins to be immobilized within and subsequently photoreleased from polymeric hydrogels. Building upon recent developments in chemoenzymatic reactions, bioorthogonal chemistry, and optogenetics, we tether fluorescent proteins, model enzymes, and growth factors site-specifically to gel biomaterials through a photocleavable protein (PhoCl) that undergoes irreversible backbone photoscission upon exposure to cytocompatible visible light (λ ≈ 400 nm) in a dose-dependent manner. Mask-based and laser-scanning lithographic strategies using commonly available light sources are employed to spatiotemporally pattern protein release from hydrogels while retaining their full activity. The photopatterned epidermal growth factor presentation is exploited to promote anisotropic cellular proliferation in 3D. We expect these methods to be broadly useful for applications in diagnostics, drug delivery, and regenerative medicine.
7.

A blue light receptor that mediates RNA binding and translational regulation.

blue PAL E. coli HeLa in vitro
Nat Chem Biol, 26 Aug 2019 DOI: 10.1038/s41589-019-0346-y Link to full text
Abstract: Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.
8.

Optogenetic control of protein binding using light-switchable nanobodies.

blue AsLOV2 HEK293T in vitro NIH/3T3 Signaling cascade control
bioRxiv, 18 Aug 2019 DOI: 10.1101/739201 Link to full text
Abstract: A growing number of optogenetic tools have been developed to control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in vivo or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications: modulating intracellular protein localization and signaling pathway activity and controlling target protein binding to surfaces and in protein separation columns. This work represents a first step towards programmable photoswitchable regulation of untagged, endogenous target proteins.
9.

Reversible photocontrol of oxidase activity by inserting a photosensitive domain into the oxidase.

blue AsLOV2 in vitro
BIOB, 7 Aug 2019 DOI: 10.1186/s40643-019-0263-7 Link to full text
Abstract: Background Photocontrol of protein activity has become a helpful strategy for regulating biological pathways. Herein, a method for the precise and reversible photocontrol of oxidase activity was developed by using the conformational change of the AsLOV2 domain. Results The AsLOV2 domain was inserted into the nonconserved sites exposed on the surface of the AdhP protein, and the alov9 fusion was successfully screened for subsequent optical experiments under the assumption that neither of these actions affected the original activity of AdhP protein. The activity of alov9 was noticeably inhibited when the fusion was exposed to 470 nm blue light and recovered within 30 min. As a result, we could precisely and reversibly photocontrol alov9 activity through the optimization of several parameters, including cofactor concentration, light intensity, and illumination time. Conclusions An efficient method was developed for the photoinhibition of enzymatic activity based on the insertion of the light-sensitive AsLOV2 domain, providing new ideas for photocontrolling metabolic pathways without carriers in the future.
10.

Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells.

blue iLID in vitro
Chem Commun (Camb), 22 Jul 2019 DOI: 10.1039/c9cc04768a Link to full text
Abstract: Decorating GUVs, used as minimal synthetic cell models, with photoswitchable proteins allows controlling the adhesion between them and their assembly into multicellular structures with light. Thereby, the chemical communication between a sender and a receiver GUV, which strongly depends on their spatial proximity, can also be photoregulated.
11.

Optical control of transcription - genetically encoded photoswitchable variants of T7 RNA polymerase.

blue AsLOV2 in vitro
Chembiochem, 13 Jun 2019 DOI: 10.1002/cbic.201900298 Link to full text
Abstract: Light-sensing protein domains that link an exogenous light signal to the activity of an enzyme have attracted much notice for engineering new regulatory mechanisms into proteins and for studying the dynamic behavior of intracellular reactions as well as reaction cascades. Light-oxygen-voltage (LOV) photoreceptors are blue light-sensing modules that have been intensely characterized for this purpose and linked to several proteins of interest. For successful application of these tools it is crucial to identify appropriate fusion strategies for combining sensor and enzyme domains that sustain activity and light-induced responsivity. Terminal fusion of LOV domains is the natural strategy; however, this is not transferrable to T7 RNA polymerase since both of its termini are involved in catalysis. We show here that it is possible to covalently insert LOV domains into the polymerase protein while preserving its activity and generating new light-responsive allosteric coupling.
12.

Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.

red IlaC IlaM E. coli HEK293 in vitro mouse in vivo Immediate control of second messengers
ACS Synth Biol, 10 Jun 2019 DOI: 10.1021/acssynbio.8b00528 Link to full text
Abstract: Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
13.

Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles.

blue red Cph1 VVD in vitro Multichromatic
Small, 21 May 2019 DOI: 10.1002/smll.201901801 Link to full text
Abstract: The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.
14.

Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4.

blue VVD in vitro
Angew Chem Int Ed Engl, 25 Mar 2019 DOI: 10.1002/anie.201900610 Link to full text
Abstract: We report direct visualization of the dynamic behavior of transcription factor GAL4 with photo-switching function (GAL4-VVD) in the DNA origami structure. Using high-speed atomic force microscopy (HS-AFM), we observed photo-induced complex formation of GAL4-VVD and substrate DNAs. Dynamic behaviors of GAL4-VVD such as binding, sliding, stalling, and dissociation with two substrate DNA strands, containing specific GAL4 binding sites, were observed. We also observed inter-strand hopping on two double-stranded (ds) DNAs. On a long substrate DNA strand that contained five binding sites, a series of GAL4-VVD/DNA interactions including binding, sliding, stalling, and dissociation could be identified while interacting with the surface. We also found the clear difference in the movement of GAL4-VVD between sliding and stalling in the AFM images. Detailed analysis revealed that GAL4-VVD randomly moved on the dsDNA using sliding and hopping for rapidly searching specific binding sites, and then stalled to the specific sites for the stable complex formation. The results suggest the existence of the different conformational mode of the protein for sliding and stalling. This single-molecule imaging system at the nanoscale resolution provides the insight of the searching mechanism of the DNA binding proteins.
15.

Synthetic cell-like membrane interfaces for probing dynamic protein-lipid interactions.

blue BcLOV4 in vitro
Meth Enzymol, 23 Mar 2019 DOI: 10.1016/bs.mie.2019.02.015 Link to full text
Abstract: The ability to rapidly screen interactions between proteins and membrane-like interfaces would aid in establishing the structure-function of protein-lipid interactions, provide a platform for engineering lipid-interacting protein tools, and potentially inform the signaling mechanisms and dynamics of membrane-associated proteins. Here, we describe the preparation and application of water-in-oil (w/o) emulsions with lipid-stabilized droplet interfaces that emulate the plasma membrane inner leaflet with tunable composition. Fluorescently labeled proteins are easily visualized in these synthetic cell-like droplets on an automated inverted fluorescence microscope, thus allowing for both rapid screening of relative binding and spatiotemporally resolved analyses of for example, protein-interface association and dissociation dynamics and competitive interactions, using commonplace instrumentation. We provide protocols for droplet formation, automated imaging assays and analysis, and the production of the positive control protein BcLOV4, a natural photoreceptor with a directly light-regulated interaction with anionic membrane phospholipids that is useful for optogenetic membrane recruitment.
16.

Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome.

red PhyB/PIF6 in vitro
Front Immunol, 26 Feb 2019 DOI: 10.3389/fimmu.2019.00226 Link to full text
Abstract: Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the know interaction partners, and could filter out all other proteins.
17.

Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties.

red Cph1 in vitro Signaling cascade control Control of cell-cell / cell-material interactions
Adv Mater Weinheim, 27 Jan 2019 DOI: 10.1002/adma.201806727 Link to full text
Abstract: Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.
18.

An Open-Source Plate Reader.

blue EL222 in vitro
Biochemistry, 4 Dec 2018 DOI: 10.1021/acs.biochem.8b00952 Link to full text
Abstract: Microplate readers are foundational instruments in ex-perimental biology and bioengineering that enable mul-tiplexed spectrophotometric measurements. To enhance their accessibility, we here report the design, construc-tion, validation, and benchmarking of an open-source microplate reader. The system features full-spectrum absorbance and fluorescence emission detection, in situ optogenetic stimulation, and stand-alone touch screen programming of automated assay protocols. The total system costs <$3500, a fraction of the cost of commer-cial plate readers, and can detect the fluorescence of common dyes down to ~10 nanomolar concentration. Functional capabilities were demonstrated in context of synthetic biology, optoge¬netics, and photosensory biol-ogy: by steady-state measurements of ligand-induced reporter gene expression in a model of bacterial quorum sensing, and by flavin photocycling kinetic measure-ments of a LOV (light-oxygen-voltage) domain photo-receptor used for optogenetic transcriptional activation. Fully detailed guides for assembling the device and au-tomating it using the custom Python-based API (Appli-cation Program Interface) are provided. This work con-tributes a key technology to the growing community-wide infrastructure of open-source biology-focused hardware, whose creation is facilitated by rapid proto-typing capabilities and low-cost electronics, optoelec-tronics, and microcomputers.
19.

Guided by light: optogenetic control of microtubule gliding assays.

blue TULIP in vitro
Nano Lett, 19 Nov 2018 DOI: 10.1021/acs.nanolett.8b03011 Link to full text
Abstract: Force generation by molecular motors drives biological processes such as asymmetric cell division and cell migration. Microtubule gliding assays, in which surface-immobilized motor proteins drive microtubule propulsion, are widely used to study basic motor properties as well as the collective behavior of active self-organized systems. Additionally, these assays can be employed for nanotechnological applications such as analyte detection, bio-computation and mechanical sensing. While such assays allow tight control over the experimental conditions, spatiotemporal control of force generation has remained underdeveloped. Here we use light-inducible protein-protein interactions to recruit molecular motors to the surface to control microtubule gliding activity in vitro. We show that using these light-inducible interactions, proteins can be recruited to the surface in patterns, reaching a ~5-fold enrichment within 6 seconds upon illumination. Subsequently, proteins are released with a half-life of 13 seconds when the illumination is stopped. We furthermore demonstrate that light-controlled kinesin recruitment results in reversible activation of microtubule gliding along the surface, enabling efficient control over local microtubule motility. Our approach to locally control force generation offers a way to study the effects of non-uniform pulling forces on different microtubule arrays and also provides novel strategies for local control in nanotechnological applications.
20.

Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.

blue AsLOV2 HeLa in vitro S. cerevisiae Epigenetic modification
ACS Synth Biol, 15 Nov 2018 DOI: 10.1021/acssynbio.8b00368 Link to full text
Abstract: Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
21.

Light-Guided Motility of a Minimal Synthetic Cell.

blue iLID in vitro
Nano Lett, 23 Oct 2018 DOI: 10.1021/acs.nanolett.8b03469 Link to full text
Abstract: Cell motility is an important but complex process; as cells move, new adhesions form at the front and adhesions disassemble at the back. To replicate this dynamic and spatiotemporally controlled asymmetry of adhesions and achieve motility in a minimal synthetic cell, we controlled the adhesion of a model giant unilamellar vesicle (GUV) to the substrate with light. For this purpose, we immobilized the proteins iLID and Micro, which interact under blue light and dissociate from each other in the dark, on a substrate and a GUV, respectively. Under blue light, the protein interaction leads to adhesion of the vesicle to the substrate, which is reversible in the dark. The high spatiotemporal control provided by light, allowed partly illuminating the GUV and generating an asymmetry in adhesions. Consequently, the GUV moves into the illuminated area, a process that can be repeated over multiple cycles. Thus, our system reproduces the dynamic spatiotemporal distribution of adhesions and establishes mimetic motility of a synthetic cell.
22.

Cyclic Stiffness Modulation of Cell‐Laden Protein–Polymer Hydrogels in Response to User‐Specified Stimuli Including Light.

blue AsLOV2 in vitro Cell differentiation Control of cell-cell / cell-material interactions
Adv Biosyst, 12 Oct 2018 DOI: 10.1002/adbi.201800240 Link to full text
Abstract: Although mechanical signals presented by the extracellular matrix are known to regulate many essential cell functions, the specific effects of these interactions, particularly in response to dynamic and heterogeneous cues, remain largely unknown. Here, a modular semisynthetic approach is introduced to create protein–polymer hydrogel biomaterials that undergo reversible stiffening in response to user‐specified inputs. Employing a novel dual‐chemoenzymatic modification strategy, fusion protein‐based gel crosslinkers are created that exhibit stimuli‐dependent intramolecular association. Linkers based on calmodulin yield calcium‐sensitive materials, while those containing the photosensitive light, oxygen, and voltage sensing domain 2 (LOV2) protein give phototunable constructs whose moduli can be cycled on demand with spatiotemporal control about living cells. These unique materials are exploited to demonstrate the significant role that cyclic mechanical loading plays on fibroblast‐to‐myofibroblast transdifferentiation in 3D space. The moduli‐switchable materials should prove useful for studies in mechanobiology, providing new avenues to probe and direct matrix‐driven changes in 4D cell physiology.
23.

Light-Induced Printing of Protein Structures on Membranes in Vitro.

red PhyB/PIF6 in vitro
Nano Lett, 10 Oct 2018 DOI: 10.1021/acs.nanolett.8b03187 Link to full text
Abstract: Reconstituting functional modules of biological systems in vitro is an important yet challenging goal of bottom-up synthetic biology, in particular with respect to their precise spatiotemporal regulation. One of the most desirable external control parameters for the engineering of biological systems is visible light, owing to its specificity and ease of defined application in space and time. Here we engineered the PhyB-PIF6 system to spatiotemporally target proteins by light onto model membranes and thus sequentially guide protein pattern formation and structural assembly in vitro from the bottom up. We show that complex micrometer-sized protein patterns can be printed on time scales of seconds, and the pattern density can be precisely controlled by protein concentration, laser power, and activation time. Moreover, when printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ, the targeted assembly into filaments and large-scale structures such as artificial rings can be accomplished. Thus, light mediated sequential protein assembly in cell-free systems represents a promising approach to hierarchically building up the next level of complexity toward a minimal cell.
24.

Reversible hydrogels with tunable mechanical properties for optically controlling cell migration.

cyan Dronpa145N in vitro Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
Nano Res, 3 Oct 2018 DOI: 10.1007/s12274-017-1890-y Link to full text
Abstract: Synthetic hydrogels are widely used as biomimetic in vitro model systems to understand how cells respond to complex microenvironments. The mechanical properties of hydrogels are deterministic for many cellular behaviors, including cell migration, spreading, and differentiation. However, it remains a major challenge to engineer hydrogels that recapture the dynamic mechanical properties of native extracellular matrices. Here, we provide a new hydrogel platform with spatiotemporally tunable mechanical properties to assay and define cellular behaviors under light. The change in the mechanical properties of the hydrogel is effected by a photo-induced switch of the cross-linker fluorescent protein, Dronpa145N, between the tetrameric and monomeric states, which causes minimal changes to the chemical properties of the hydrogel. The mechanical properties can be rapidly and reversibly tuned for multiple cycles using visible light, as confirmed by rheological measurements and atomic force microscopybased nano-indentation. We further demonstrated real-time and reversible modulation of cell migration behaviors on the hydrogels through photo-induced stiffness switching, with minimal invasion to the cultured cells. Hydrogels with a programmable mechanical history and a spatially defined mechanical hierarchy might serve as an ideal model system to better understand complex cellular functions.
25.

Generic and reversible opto-trapping of biomolecules.

red PhyB/PIF6 in vitro
Acta Biomater, 27 Aug 2018 DOI: 10.1016/j.actbio.2018.08.032 Link to full text
Abstract: Molecular traps can control activity and abundance of many biological factors. Here, we report the development of a generic opto-trap to reversibly bind and release biomolecules with high spatiotemporal control by illumination with noninvasive and cell-compatible red and far-red light. We use the Arapidopsis thaliana photoreceptor phytochrome B to regulate the release of diverse proteins from a variety of material scaffolds. Fusion of a short 100 amino acids "PIF-tag", derived from the phytochrome interacting factor 6, renders arbitrary molecules opto-trap-compatible. Reversible opto-trapping of target molecules enables novel possibilities for future developments in diagnostics, therapeutics and basic research.
Submit a new publication to our database