Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.

near-infrared red BphP1/Q-PAS1 DrBphP iLight 4T1 HeLa mouse in vivo murine lung endothelial cells primary mouse cortical neurons primary mouse fibroblasts Transgene expression
bioRxiv, 18 Oct 2024 DOI: 10.1101/2024.10.18.619161 Link to full text
Abstract: We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
2.

Optogenetic-based Localization of Talin to the Plasma Membrane Promotes Activation of β3 Integrins.

blue CRY2/CIB1 CHO murine lung endothelial cells
J Biol Chem, 15 Apr 2021 DOI: 10.1016/j.jbc.2021.100675 Link to full text
Abstract: Interaction of talin with the cytoplasmic tails of integrin β triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin knockout mice, loss of talin interaction with platelet integrin αIIbβ3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVβ3 affects angiogenesis. In normal cells, talin is auto-inhibited and localized in the cytoplasm. Here we employed an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (CRY2 fused to the N-terminus of talin; CIBN-CAAX) responsive to 450 nm (blue) light was inserted into CHO cells and endothelial cells also expressing αIIbβ3 or αVβ3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of CRY2-talin to the CIBN-CAAX-decorated plasma membrane. This resulted in β3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Rap1-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated β3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in β3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.
3.

Optogenetic interrogation of integrin αVβ3 function in endothelial cells.

blue TULIP murine lung endothelial cells Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 1 Sep 2017 DOI: 10.1242/jcs.205203 Link to full text
Abstract: αVβ3 is reported to promote angiogenesis in some model systems but not in others. Here we used optogenetics to study effects of αVβ3 interaction with the intracellular adapter, kindlin-2, on endothelial cell functions potentially relevant to angiogenesis. Since interaction of kindlin-2 with αVβ3 requires the C-terminal three residues of the β3 cytoplasmic tail (Arg-Gly-Thr; RGT), optogenetic probes LOVpep and ePDZ1 were fused to β3ΔRGT-GFP and mCherry-kindlin2, respectively, and expressed in β3-null microvascular endothelial cells. Exposure of the cells to 450 nm (blue) light caused rapid and specific interaction of kindlin-2 with αVβ3 as assessed by immunofluorescence and TIRF microscopy, and it led to increased endothelial cell migration, podosome formation and angiogenic sprouting. Analyses of kindlin-2 mutants indicated that interaction of kindlin-2 with other kindlin-2 binding partners, including c-Src, actin, integrin-linked kinase and phosphoinositides, were also likely necessary for these endothelial cell responses. Thus, kindlin-2 promotes αVβ3-dependent angiogenic functions of endothelial cells through its simultaneous interactions with β3 and several other binding partners. Optogenetic approaches should find further use in clarifying spatiotemporal aspects of vascular cell biology.
Submit a new publication to our database