Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 78 results
1.

Photo-SNAP-tag, a Light-Regulated Chemical Labeling System.

blue AsLOV2 CRY2/CIB1 iLID HEK293T
ACS Chem Biol, 16 Jul 2020 DOI: 10.1021/acschembio.0c00412 Link to full text
Abstract: Methods that allow labeling and tracking of proteins have been instrumental for understanding their function. Traditional methods for labeling proteins include fusion to fluorescent proteins or self-labeling chemical tagging systems such as SNAP-tag or Halo-tag. These latter approaches allow bright fluorophores or other chemical moieties to be attached to a protein of interest through a small fusion tag. In this work, we sought to improve the versatility of self-labeling chemical-tagging systems by regulating their activity with light. We used light-inducible dimerizers to reconstitute a split SNAP-tag (modified human O6-alkylguanine-DNA-alkyltransferase, hAGT) protein, allowing tight light-dependent control of chemical labeling. In addition, we generated a small split SNAP-tag fragment that can efficiently self-assemble with its complement fragment, allowing high labeling efficacy with a small tag. We envision these tools will extend the versatility and utility of the SNAP-tag chemical system for protein labeling applications.
2.

Orthogonal Blue and Red Light Controlled Cell-Cell Adhesions Enable Sorting-out in Multicellular Structures.

blue red Cph1 VVD MDA-MB-231 Control of cell-cell / cell-material interactions
ACS Synth Biol, 16 Jul 2020 DOI: 10.1021/acssynbio.0c00150 Link to full text
Abstract: The self-assembly of different cell types into multicellular structures and their organization into spatiotemporally controlled patterns are both challenging and extremely powerful to understand how cells function within tissues and for bottom-up tissue engineering. Here, we not only independently control the self-assembly of two cell types into multicellular architectures with blue and red light, but also achieve their self-sorting into distinct assemblies. This required developing two cell types that form selective and homophilic cell-cell interactions either under blue or red light using photoswitchable proteins as artificial adhesion molecules. The interactions were individually triggerable with different colors of light, reversible in the dark, and provide noninvasive and temporal control over the cell-cell adhesions. In mixtures of the two cells, each cell type self-assembled independently upon orthogonal photoactivation, and cells sorted out into separate assemblies based on specific self-recognition. These self-sorted multicellular architectures provide us with a powerful tool for producing tissue-like structures from multiple cell types and investigate principles that govern them.
3.

Bringing Light into Cell-Free Expression.

blue YtvA in vitro
ACS Synth Biol, 15 Jul 2020 DOI: 10.1021/acssynbio.0c00211 Link to full text
Abstract: Cell-free systems, as part of the synthetic biology field, have become a critical platform in biological studies. However, there is a lack of research into developing a switch for a dynamical control of the transcriptional and translational process. The optogenetic tool has been widely proven as an ideal control switch for protein synthesis due to its nontoxicity and excellent time-space conversion. Hence, in this study, a blue light-regulated two-component system named YF1/FixJ was incorporated into an Escherichia coli-based cell-free system to control protein synthesis. The corresponding cell-free system successfully achieved a 5-fold dynamic protein expression by blue light repression and 3-fold dynamic expression by blue light activation. With the aim of expanding the applications of cell-free synthetic biology, the cell-free blue light-sensing system was used to perform imaging, light-controlled antibody synthesis, and light-triggered artificial cell assembly. This study can provide a guide for further research into the field of cell-free optical sensing. Moreover, it will also promote the development of cell-free synthetic biology and optogenetics through applying the cell-free optical sensing system to synthetic biology education, biopharmaceutical research, and artificial cell construction.
4.

Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury.

blue Magnets E. coli
ACS Sens, 8 Jul 2020 DOI: 10.1021/acssensors.0c00855 Link to full text
Abstract: We present a new concept for whole-cell biosensors that couples the response to Hg2+ with bioluminescence and bacterial aggregation. This allows us to use the bacterial aggregation to preconcentrate the bioluminescent bacteria at the substrate surface and increase the sensitivity of Hg2+ detection. This whole-cell biosensor combines a Hg2+-sensitive bioluminescence reporter and light-responsive bacterial cell-cell adhesions. We demonstrate that the blue luminescence in response to Hg2+ is able to photoactivate bacterial aggregation, which provides a second readout for Hg2+ detection. In return, the Hg2+-triggered bacterial aggregation leads to faster sedimentation and more efficient formation of biofilms. At low Hg2+ concentrations, the enrichment of the bacteria in biofilms leads to an up to 10-fold increase in the signal. The activation of photoswitchable proteins with biological light is a new concept in optogenetics, and the presented bacterial biosensor design is transferable to other bioluminescent reporters with particular interest for environmental monitoring.
5.

Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities.

blue Magnets E. coli Control of cell-cell / cell-material interactions
ACS Synth Biol, 15 Apr 2020 DOI: 10.1021/acssynbio.0c00054 Link to full text
Abstract: Although the fundamental importance and biotechnological potential of multibacterial communities, also called biofilms, are well-known, our ability to control them is limited. We present a new way of dynamically controlling bacteria-bacteria adhesions by using blue light and how these photoswitchable adhesions can be used to regulate multicellularity and associated bacterial behavior. To achieve this, the photoswitchable proteins nMagHigh and pMagHigh were expressed on bacterial surfaces as adhesins to allow multicellular clusters to assemble under blue light and reversibly disassemble in the dark. Regulation of the bacterial cell-cell adhesions with visible light provides unique advantages including high spatiotemporal control, tunability, and noninvasive remote regulation. Moreover, these photoswitchable adhesions make it possible to regulate collective bacterial functions including aggregation, quorum sensing, biofilm formation, and metabolic cross-feeding between auxotrophic bacteria with light. Overall, the photoregulation of bacteria-bacteria adhesions provides a new way of studying bacterial cell biology and will enable the design of biofilms for biotechnological applications.
6.

Light-inducible generation of membrane curvature in live cells with engineered BAR domain proteins.

blue cyan iLID pdDronpa1 Cos-7 U-2 OS Organelle manipulation
ACS Synth Biol, 26 Mar 2020 DOI: 10.1021/acssynbio.9b00516 Link to full text
Abstract: Nanoscale membrane curvature is now understood to play an active role in essential cellular processes such as endocytosis, exocytosis and actin dynamics. Previous studies have shown that membrane curvature can directly affect protein function and intracellular signaling. However, few methods are able to precisely manipulate membrane curvature in live cells. Here, we report the development of a new method of generating nanoscale membrane curvature in live cells that is controllable, reversible, and capable of precise spatial and temporal manipulation. For this purpose, we make use of BAR domain proteins, a family of well-studied membrane-remodeling and membrane-sculpting proteins. Specifically, we engineered two optogenetic systems, opto-FBAR and opto-IBAR, that allow light-inducible formation of positive and negative membrane curvature, respectively. Using opto-FBAR, blue light activation results in the formation of tubular membrane invaginations (positive curvature), controllable down to the subcellular level. Using opto-IBAR, blue light illumination results in the formation of membrane protrusions or filopodia (negative curvature). These systems present a novel approach for light-inducible manipulation of nanoscale membrane curvature in live cells.
7.

SRRF-stream imaging of optogenetically controlled furrow formation shows localized and coordinated endocytosis and exocytosis mediating membrane remodeling.

blue iLID RAW264.7 Control of cytoskeleton / cell motility / cell shape
ACS Synth Biol, 10 Mar 2020 DOI: 10.1021/acssynbio.9b00521 Link to full text
Abstract: Cleavage furrow formation during cytokinesis involves extensive membrane remodeling. In the absence of methods to exert dynamic control over these processes, it has been a challenge to examine the basis of this remodeling. Here we used a subcellular optogenetic approach to induce this at will and found that furrow formation is mediated by actomyosin contractility, retrograde plasma membrane flow, localized decrease in membrane tension and endocytosis. FRAP, 4-D imaging and inhibition or upregulation of endocytosis or exocytosis show that ARF6 and Exo70 dependent localized exocytosis supports a potential model for intercellular bridge elongation. TIRF and Super Resolution Radial Fluctuation (SRRF) stream microscopy show localized VAMP2-mediated exocytosis and incorporation of membrane lipids from vesicles into the plasma membrane at the front edge of the nascent daughter cell. Thus, spatially separated but coordinated plasma membrane depletion and addition are likely contributors to membrane remodeling during cytokinetic processes.
8.

Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.

blue bPAC (BlaC) HeLa MDCK Signaling cascade control Immediate control of second messengers
ACS Sens, 26 Feb 2020 DOI: 10.1021/acssensors.9b01941 Link to full text
Abstract: Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been developed for the visualization of signaling molecule activities. Currently, most of them are comprised of cyan and yellow fluorescent proteins (CFP and YFP), precluding the use of multiple FRET biosensors within a single cell. Moreover, the FRET biosensors based on CFP and YFP are incompatible with the optogenetic tools that operate at blue light. To overcome these problems, here, we have developed FRET biosensors with red-shifted excitation and emission wavelengths. We chose mKOκ and mKate2 as the favorable donor and acceptor pair by calculating the Förster distance. By optimizing the order of fluorescent proteins and modulatory domains of the FRET biosensors, we developed a FRET biosensor backbone named "Booster". The performance of the protein kinase A (PKA) biosensor based on the Booster backbone (Booster-PKA) was comparable to that of AKAR3EV, a previously developed FRET biosensor comprising CFP and YFP. For the proof of concept, we first showed simultaneous monitoring of activities of two protein kinases with Booster-PKA and ERK FRET biosensors based on CFP and YFP. Second, we showed monitoring of PKA activation by Beggiatoa photoactivated adenylyl cyclase, an optogenetic generator of cyclic AMP. Finally, we presented PKA activity in living tissues of transgenic mice expressing Booster-PKA. Collectively, the results demonstrate the effectiveness and versatility of Booster biosensors as an imaging tool in vitro and in vivo.
9.

SPLIT: Stable Protein Coacervation using a Light Induced Transition.

violet PhoCl in vitro S. cerevisiae Organelle manipulation
ACS Synth Biol, 20 Feb 2020 DOI: 10.1021/acssynbio.9b00503 Link to full text
Abstract: Protein coacervates serve as hubs to concentrate and sequester proteins and nucleotides and thus function as membrane-less organelles to manipulate cell physiology. We have engineered a coacervating protein to create tunable, synthetic membrane-less organelles that assemble in response to a single pulse of light. Coacervation is driven by the intrinsically disordered RGG domain from the protein LAF-1, and opto-responsiveness is coded by the protein PhoCl which cleaves in response to 405 nm light. We developed a fusion protein containing a solubilizing maltose binding protein domain, PhoCl, and two copies of the RGG domain. Several seconds of illumination at 405 nm is sufficient to cleave PhoCl, removing the solubilization domain and enabling RGG-driven coacervation within minutes in cellular-sized water-in-oil emulsions. An optimized version of this system displayed light-induced coacervation in Saccharomyces cerevisiae. The methods described here provide novel strategies for inducing protein phase separation using light.
10.

Light-Inducible Recombinases for Bacterial Optogenetics.

blue Magnets VVD E. coli Nucleic acid editing
ACS Synth Biol, 21 Jan 2020 DOI: 10.1021/acssynbio.9b00395 Link to full text
Abstract: Optogenetic tools can provide direct and programmable control of gene expression. Light-inducible recombinases, in particular, offer a powerful method for achieving precise spatiotemporal control of DNA modification. However, to-date this technology has been largely limited to eukaryotic systems. Here, we develop optogenetic recombinases for Escherichia coli that activate in response to blue light. Our approach uses a split recombinase coupled with photodimers, where blue light brings the split protein together to form a functional recombinase. We tested both Cre and Flp recombinases, Vivid and Magnet photodimers, and alternative protein split sites in our analysis. The optimal configuration, Opto-Cre-Vvd, exhibits strong blue light-responsive excision and low ambient light sensitivity. For this system we characterize the effect of light intensity and the temporal dynamics of light-induced recombination. These tools expand the microbial optogenetic toolbox, offering the potential for precise control of DNA excision with light-inducible recombinases in bacteria.
11.

Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T HeLa in vitro
ACS Synth Biol, 17 Dec 2019 DOI: 10.1021/acssynbio.9b00277 Link to full text
Abstract: Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.
12.

Multiple-site diversification of regulatory sequences enables inter-species operability of genetic devices.

green CcaS/CcaR P. putida
ACS Synth Biol, 3 Dec 2019 DOI: 10.1021/acssynbio.9b00375 Link to full text
Abstract: The features of the light-responsive cyanobacterial CcaSR regulatory module that determine interoperability of this optogenetic device between Escherichia coli and Pseudomonas putida have been examined. For this, all structural parts (i.e. ho1 and pcyA genes for synthesis of phycocyanobilin, the ccaS/ccaR system from Synechocystis and its cognate downstream promoter) were maintained but their expression levels and stoichiometry diversified by [i] reassembling them together in a single broad host range, standardized vector and [ii] subjecting the non-coding regulatory sequences to multiple cycles of directed evolution with random genomic mutations (DIvERGE), a recombineering method that intensifies mutation rates within discrete DNA segments. Once passed to P. putida, various clones displayed a wide dynamic range, insignificant leakiness and excellent capacity in response to green light. Inspection of the evolutionary intermediates pinpointed translational control as the main bottleneck for interoperability and suggested a general approach for easing the exchange of genetic cargoes between different species i.e. optimization of relative expression levels and upturning of subcomplex stoichiometry.
13.

Repurposing protein degradation for optogenetic modulation of protein activities.

blue AsLOV2 HEK293T PC-12 Signaling cascade control Cell differentiation
ACS Synth Biol, 10 Oct 2019 DOI: 10.1021/acssynbio.9b00285 Link to full text
Abstract: Non-neuronal optogenetic approaches empower precise regulation of protein dynamics in live cells but often require target-specific protein engineering. To address this challenge, we developed a generalizable light-modulated protein stabilization system (GLIMPSe) to control intracellular protein level independent of its functionality. We applied GLIMPSe to control two distinct classes of proteins: mitogen-activated protein kinase phosphatase 3 (MKP3), a negative regulator of the extracellu-lar signal-regulated kinase (ERK) pathway, as well as a constitutively active form of MEK (CA MEK), a positive regulator of the same pathway. Kinetics study showed that light-induced protein stabilization could be achieved within 30 minutes of blue light stimulation. GLIMPSe enables target-independent optogenetic control of protein activities and therefore minimizes the systematic variation embedded within different photoactivatable proteins. Overall, GLIMPSe promises to achieve light-mediated post-translational stabilization of a wide array of target proteins in live cells.
14.

An AND-Gated Drug and Photoactivatable Cre-loxP System for Spatiotemporal Control in Cell-Based Therapeutics.

blue Magnets HEK293T Jurkat
ACS Synth Biol, 8 Oct 2019 DOI: 10.1021/acssynbio.9b00175 Link to full text
Abstract: While engineered chimeric antigen receptor (CAR) T cells have shown promise in detecting and eradicating cancer cells within patients, it remains difficult to identify a set of truly cancer-specific CAR-targeting cell surface antigens to prevent potentially fatal on-target off-tumor toxicity against other healthy tissues within the body. To help address this issue, we present a novel tamoxifen-gated photoactivatable split-Cre recombinase optogenetic system, called TamPA-Cre, that features high spatiotemporal control to limit CAR T cell activity to the tumor site. We created and optimized a novel genetic AND gate switch by integrating the features of tamoxifen-dependent nuclear localization and blue-light-inducible heterodimerization of Magnet protein domains (nMag, pMag) into split Cre recombinase. By fusing the cytosol-localizing mutant estrogen receptor ligand binding domain (ERT2) to the N-terminal half of split Cre(2-59aa)-nMag, the TamPA-Cre protein ERT2-CreN-nMag is physically separated from its nuclear-localized binding partner, NLS-pMag-CreC(60-343aa). Without tamoxifen to drive nuclear localization of ERT2-CreN-nMag, the typically high background of the photoactivation system was significantly suppressed. Upon blue light stimulation following tamoxifen treatment, the TamPA-Cre system exhibits sensitivity to low intensity, short durations of blue light exposure to induce robust Cre-loxP recombination efficiency. We finally demonstrate that this TamPA-Cre system can be applied to specifically control localized CAR expression and subsequently T cell activation. As such, we posit that CAR T cell activity can be confined to a solid tumor site by applying an external stimulus, with high precision of control in both space and time, such as light.
15.

Production of Phytochromes by High-Cell-Density E. coli Fermentation.

red Cph1 PhyB/PIF6 in vitro
ACS Synth Biol, 26 Sep 2019 DOI: 10.1021/acssynbio.9b00267 Link to full text
Abstract: Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.
16.

Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light.

violet PhoCl MCF7 MDCK Control of cytoskeleton / cell motility / cell shape
ACS Chem Biol, 20 Sep 2019 DOI: 10.1021/acschembio.9b00460 Link to full text
Abstract: Precise integration of individual cell behaviors is indispensable for collective tissue morphogenesis and maintenance of tissue integrity. Organized multicellular behavior is achieved via mechanical coupling of individual cellular contractility, mediated by cell adhesion molecules at the cell-cell interface. Conventionally, gene depletion or laser microsurgery has been used for functional analysis of intercellular mechanotransduction. Nevertheless, these methods are insufficient to investigate either the spatiotemporal dynamics or the biomolecular contribution in cell-cell mechanical coupling within collective multicellular behaviors. Herein, we present our effort in adaption of PhoCl for attenuation of cell-to-cell tension transmission mediated by E-cadherin. To release intercellular contractile tension applied on E-cadherin molecules with external light, a genetically encoded photocleavable module called PhoCl was inserted into the intracellular domain of E-cadherin, thereby creating photocleavable cadherin (PC-cadherin). In response to light illumination, the PC-cadherin cleaved into two fragments inside cells, resulting in attenuating mechanotransduction at intercellular junctions in living epithelial cells. Light-induced perturbation of the intercellular tension balance with surrounding cells changed the cell shape in an epithelial cell sheet. The method is expected to enable optical manipulation of force-mediated cell-to-cell communications in various multicellular behaviors, which contributes to a deeper understanding of embryogenesis and oncogenesis.
17.

Amelioration of Diabetes in a Murine Model upon Transplantation of Pancreatic β-Cells with Optogenetic Control of Cyclic Adenosine Monophosphate.

blue bPAC (BlaC) MIN6 Immediate control of second messengers
ACS Synth Biol, 16 Sep 2019 DOI: 10.1021/acssynbio.9b00262 Link to full text
Abstract: Pharmacological augmentation of glucose-stimulated insulin secretion (GSIS), for example, to overcome insulin resistance in type 2 diabetes is linked to suboptimal regulation of blood sugar. Cultured β-cells and islets expressing a photoactivatable adenylyl cyclase (PAC) are amenable to GSIS potentiation with light. However, whether PAC-mediated enhancement of GSIS can improve the diabetic state remains unknown. To this end, β-cells were engineered with stable PAC expression that led to over 2-fold greater GSIS upon exposure to blue light while there were no changes in the absence of glucose. Moreover, the rate of oxygen consumption was unaltered despite the photoinduced elevation of GSIS. Transplantation of these cells into streptozotocin-treated mice resulted in improved glucose tolerance, lower hyperglycemia, and higher plasma insulin when subjected to illumination. Embedding optogenetic networks in β-cells for physiologically relevant control of GSIS will enable novel solutions potentially overcoming the shortcomings of current treatments for diabetes.
18.

Synthetic Biology Tools for the Fast-Growing Marine Bacterium Vibrio natriegens.

blue YtvA E. coli V. natriegens
ACS Synth Biol, 16 Aug 2019 DOI: 10.1021/acssynbio.9b00176 Link to full text
Abstract: The fast-growing non-model marine bacterium Vibrio natriegens has recently garnered attention as a host for molecular biology and biotechnology applications. In order further its capabilities as a synthetic biology chassis, we have characterized a wide range of genetic parts and tools for use in V. natriegens. These parts include many commonly-used resistance markers, promoters, ribosomal binding sites, reporters, terminators, degradation tags, origin of replication sequences and plasmid backbones. We have characterized the behavior of these parts in different combinations and have compared their functionality in V. natriegens and Escherichia coli. Plasmid stability over time, plasmid copy numbers, and production load on the cells were also evaluated. Additionally, we tested constructs for chemical and optogenetic induction and characterized basic engineered circuit behavior in V. natriegens. The results indicate that while most parts and constructs work similarly in the two organisms, some deviate significantly. Overall, these results will serve as a primer for anyone interested in engineering V. natriegens and will aid in developing more robust synthetic biology principles and approaches for this non-model chassis.
19.

OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.

blue CRY2/CIB1 HeLa Signaling cascade control
ACS Synth Biol, 24 Jun 2019 DOI: 10.1021/acssynbio.9b00059 Link to full text
Abstract: Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.
20.

Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.

red IlaC IlaM E. coli HEK293 in vitro mouse in vivo Immediate control of second messengers
ACS Synth Biol, 10 Jun 2019 DOI: 10.1021/acssynbio.8b00528 Link to full text
Abstract: Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
21.

Optogenetic downregulation of protein levels with an ultrasensitive switch.

blue AsLOV2 AtLOV2 iLID LOVTRAP S. cerevisiae Cell cycle control Transgene expression
ACS Synth Biol, 8 Apr 2019 DOI: 10.1021/acssynbio.8b00471 Link to full text
Abstract: Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, e.g. for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes as well as fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.
22.

A yeast system for discovering optogenetic inhibitors of eukaryotic translation initiation.

blue cyan AsLOV2 Dronpa145K/N PYP RsLOV S. cerevisiae
ACS Synth Biol, 22 Mar 2019 DOI: 10.1021/acssynbio.8b00386 Link to full text
Abstract: The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis non-invasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-depednednt translation initiation in a mechanistically defined manner.
23.

Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration.

blue CRY2/CIB1 iLID RAW264.7 Control of cytoskeleton / cell motility / cell shape
ACS Synth Biol, 22 Feb 2019 DOI: 10.1021/acssynbio.8b00356 Link to full text
Abstract: Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
24.

Synthetic Control of Protein Degradation during Cell Proliferation and Developmental Processes.

blue LOV domains Review
ACS Omega, 6 Feb 2019 DOI: 10.1021/acsomega.8b03011 Link to full text
Abstract: Synthetic tools for the control of protein function are valuable for biomedical research to characterize cellular functions of essential proteins or if a rapid switch in protein activity is necessary. The ability to tune protein activity precisely opens another level of investigations that is not available with gene deletion mutants. Control of protein stability is a versatile approach to influence the activity of a target protein by its cellular abundance. Diverse strategies have been developed to achieve efficient proteolysis using external inducers or differentiation-coupled signals. The latter is especially important for the inactivation of a protein during a developmental process. Recently, several approaches to achieve this have been engineered. In this article, we present current synthetic tools for regulation of protein stability that allow fine-tuning of protein abundance, their advantages and disadvantages with an emphasis on methods applicable in the context of cell differentiation and development. We give an outlook toward future developments and discuss main applications of these tools.
25.

Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.

blue AsLOV2 HeLa in vitro S. cerevisiae Epigenetic modification
ACS Synth Biol, 15 Nov 2018 DOI: 10.1021/acssynbio.8b00368 Link to full text
Abstract: Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
Submit a new publication to our database