1.
Emerging Approaches for Studying Lipid Dynamics, Metabolism, and Interactions in Cells.
Abstract:
Lipids are a major class of biological molecules, the primary components of cellular membranes, and critical signaling molecules that regulate cell biology and physiology. Due to their dynamic behavior within membranes, rapid transport between organelles, and complex and often redundant metabolic pathways, lipids have traditionally been considered among the most challenging biological molecules to study. In recent years, a plethora of tools bridging the chemistry-biology interface has emerged for studying different aspects of lipid biology. Here, we provide an overview of these approaches. We discuss methods for lipid detection, including genetically encoded biosensors, synthetic lipid analogs, and metabolic labeling probes. For targeted manipulation of lipids, we describe pharmacological agents and controllable enzymes, termed membrane editors, that harness optogenetics and chemogenetics. To conclude, we survey techniques for elucidating lipid-protein interactions, including photoaffinity labeling and proximity labeling. Collectively, these strategies are revealing new insights into the regulation, dynamics, and functions of lipids in cell biology.
2.
Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
Abstract:
Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein-like probes, including near-infrared fluorescence, independence of oxygen, small size, and photosensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells.