Optogenetic-induced α-synuclein accumulation reveals early synaptic dysfunction in experimental models of Parkinson's disease.
Abstract:
Presynaptic accumulation of misfolded α-synuclein (α-syn) and altered synaptic transmission are considered early events in the pathogenesis of Parkinson's disease (PD), suggesting a potential causal link between these two events. However, the mechanisms by which α-syn aggregation induces synaptic dysfunction and the subsequent progressive neurodegeneration remain elusive. In the present study we leveraged the high temporal resolution of the Light-Inducible Protein Aggregation (LIPA) system in vivo and in human dopaminergic neurons to explore the early sequence of α-syn-induced pathological events leading to synaptopathy. We observed that nigrostriatal axonal transport and presynaptic accumulation of α-syn aggregates altered the activity of different neuronal populations in the mouse striatum. The results of histological and metabolite analyses show that presynaptic accumulation of α-syn induced a shift in the activation pattern of D1- and D2-expressing striatal medium spiny neurons, caused an increase in the size and density of dopaminergic synapses, and disrupted striatal dopamine signaling. Altogether, our findings reveal that the accumulation of α-syn in dopaminergic terminals triggered early presynaptic impairments, which subsequently altered striatal neuronal activity. Our study provides new insights into the molecular mechanisms underlying early synaptopathy in PD.