Qr: journal:"Nat Neurosci"
Showing 1 - 2 of 2 results
1.
Munc18 modulates syntaxin phase separation to promote exocytosis.
-
Pei, Q
-
Chen, Q
-
Tian, Z
-
Zhu, L
-
Chen, Y
-
Gong, J
-
Wang, S
-
Xiang, Y
-
Khamo, JS
-
Fan, J
-
Rong, Y
-
Yu, Y
-
Qin, Y
-
Wu, S
-
Faragalla, Y
-
Cao, P
-
Zhang, K
-
Lai, Y
-
Wu, LG
-
Ma, C
-
Yang, X
-
Diao, J
Abstract:
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin mediates neuronal exocytosis and self-assembles into large clusters in the plasma membrane. The formation and function of these clusters, and whether they promote or inhibit synaptic-vesicle fusion, remain unclear. Here using optogenetic control of syntaxin clustering in vitro and in vivo, as a light-inducible gain-of-function assay, we show that light-enhanced clustering reduces both spontaneous and triggered vesicle fusion, and this impairs mouse hunting behavior. Cluster formation is induced by liquid-liquid phase separation (LLPS) of the SNARE domain of syntaxin. For the regulatory mechanism, Munc18, which is known to alter syntaxin conformation, acts to reduce LLPS for cluster formation, thereby promoting active syntaxin. These results suggest that exocytosis regulation involves LLPS-induced syntaxin clusters that serve as a syntaxin reservoir from which Munc18 captures syntaxin monomers to form a syntaxin-Munc18 complex, setting the stage for efficient fusion.
2.
Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons.
-
Dietz, DM
-
Sun, H
-
Lobo, MK
-
Cahill, ME
-
Chadwick, B
-
Gao, V
-
Koo, JW
-
Mazei-Robison, MS
-
Dias, C
-
Maze, I
-
Damez-Werno, D
-
Dietz, KC
-
Scobie, KN
-
Ferguson, D
-
Christoffel, D
-
Ohnishi, Y
-
Hodes, GE
-
Zheng, Y
-
Neve, RL
-
Hahn, KM
-
Russo, SJ
-
Nestler, EJ
Abstract:
Repeated cocaine administration increases the dendritic arborization of nucleus accumbens neurons, but the underlying signaling events remain unknown. Here we show that repeated exposure to cocaine negatively regulates the active form of Rac1, a small GTPase that controls actin remodeling in other systems. Further, we show, using viral-mediated gene transfer, that overexpression of a dominant negative mutant of Rac1 or local knockout of Rac1 is sufficient to increase the density of immature dendritic spines on nucleus accumbens neurons, whereas overexpression of a constitutively active Rac1 or light activation of a photoactivatable form of Rac1 blocks the ability of repeated cocaine exposure to produce this effect. Downregulation of Rac1 activity likewise promotes behavioral responses to cocaine exposure, with activation of Rac1 producing the opposite effect. These findings establish that Rac1 signaling mediates structural and behavioral plasticity in response to cocaine exposure.