Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results

Benchmarking of Cph1 Mutants and DrBphP for Light-Responsive Phytochrome-Based Hydrogels with Reversibly Adjustable Mechanical Properties.

red Cph1 DrBphP Benchmarking
Adv Biol (Weinh), 28 Apr 2022 DOI: 10.1002/adbi.202000337 Link to full text
Abstract: In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.

Revisiting the Role of TGFβ Receptor Internalization for Smad Signaling: It is Not Required in Optogenetic TGFβ Signaling Systems.

blue CRY2/CIB1 HeLa Signaling cascade control
Adv Biol (Weinh), 31 Aug 2021 DOI: 10.1002/adbi.202101008 Link to full text
Abstract: Endocytosis is an important process by which many signaling receptors reach their intracellular effectors. Accumulating evidence suggests that internalized receptors play critical roles in triggering cellular signaling, including transforming growth factor β (TGFβ) signaling. Despite intensive studies on the TGFβ pathway over the last decades, the necessity of TGFβ receptor endocytosis for downstream TGFβ signaling responses is a subject of debate. In this study, mathematical modeling and synthetic biology approaches are combined to re-evaluate whether TGFβ receptor internalization is indispensable for inducing Smad signaling. It is found that optogenetic systems with plasma membrane-tethered TGFβ receptors can induce fast and sustained Smad2 activation upon light stimulations. Modeling analysis suggests that endocytosis is precluded for the membrane-anchored optogenetic TGFβ receptors. Therefore, this study provides new evidence to support that TGFβ receptor internalization is not required for Smad2 activation.

Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling.

blue BcLOV4 HEK293T Signaling cascade control Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
Adv Biol (Weinh), 21 Jul 2021 DOI: 10.1002/adbi.202100810 Link to full text
Abstract: Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation drives yes-associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP-transcriptional enhanced associate domain transcriptional activity. These single-transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.

The Rise of Molecular Optogenetics.

blue green Cobalamin-binding domains Cryptochromes LOV domains Review
Adv Biol (Weinh), May 2021 DOI: 10.1002/adbi.202100776 Link to full text
Abstract: Abstract not available.

Design of Smart Antibody Mimetics with Photosensitive Switches.

blue AsLOV2 HEK293T HeLa Transgene expression Cell death Nucleic acid editing
Adv Biol (Weinh), 5 Feb 2021 DOI: 10.1002/adbi.202000541 Link to full text
Abstract: As two prominent examples of intracellular single-domain antibodies or antibody mimetics derived from synthetic protein scaffolds, monobodies and nanobodies are gaining wide applications in cell biology, structural biology, synthetic immunology, and theranostics. Herein, a generally applicable method to engineer light-controllable monobodies and nanobodies, designated as moonbody and sunbody, respectively, is introduced. These engineered antibody-like modular domains enable rapid and reversible antibody-antigen recognition by utilizing light. By the paralleled insertion of two light-oxygen-voltage domain 2 modules into a single sunbody and the use of bivalent sunbodies, the range of dynamic changes of photoswitchable sunbodies is substantially enhanced. Furthermore, the use of moonbodies or sunbodies to precisely control protein degradation, gene transcription, and base editing by harnessing the power of light is demonstrated.
Submit a new publication to our database