Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Using Synthetic Biology to Engineer Spatial Patterns.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Adv Biosyst, 17 Dec 2018 DOI: 10.1002/adbi.201800280 Link to full text
Abstract: Synthetic biology has emerged as a multidisciplinary field that provides new tools and approaches to address longstanding problems in biology. It integrates knowledge from biology, engineering, mathematics, and biophysics to build—rather than to simply observe and perturb—biological systems that emulate natural counterparts or display novel properties. The interface between synthetic and developmental biology has greatly benefitted both fields and allowed to address questions that would remain challenging with classical approaches due to the intrinsic complexity and essentiality of developmental processes. This Progress Report provides an overview of how synthetic biology can help to understand a process that is crucial for the development of multicellular organisms: pattern formation. It reviews the major mechanisms of genetically encoded synthetic systems that have been engineered to establish spatial patterns at the population level. Limitations, challenges, applications, and potential opportunities of synthetic pattern formation are also discussed.
2.

Cyclic Stiffness Modulation of Cell‐Laden Protein–Polymer Hydrogels in Response to User‐Specified Stimuli Including Light.

blue AsLOV2 in vitro
Adv Biosyst, 12 Oct 2018 DOI: 10.1002/adbi.201800240 Link to full text
Abstract: Although mechanical signals presented by the extracellular matrix are known to regulate many essential cell functions, the specific effects of these interactions, particularly in response to dynamic and heterogeneous cues, remain largely unknown. Here, a modular semisynthetic approach is introduced to create protein–polymer hydrogel biomaterials that undergo reversible stiffening in response to user‐specified inputs. Employing a novel dual‐chemoenzymatic modification strategy, fusion protein‐based gel crosslinkers are created that exhibit stimuli‐dependent intramolecular association. Linkers based on calmodulin yield calcium‐sensitive materials, while those containing the photosensitive light, oxygen, and voltage sensing domain 2 (LOV2) protein give phototunable constructs whose moduli can be cycled on demand with spatiotemporal control about living cells. These unique materials are exploited to demonstrate the significant role that cyclic mechanical loading plays on fibroblast‐to‐myofibroblast transdifferentiation in 3D space. The moduli‐switchable materials should prove useful for studies in mechanobiology, providing new avenues to probe and direct matrix‐driven changes in 4D cell physiology.
3.

Controlling Cells with Light and LOV.

blue AtLOV LOV domains Review
Adv Biosyst, 2 Jul 2018 DOI: 10.1002/adbi.201800098 Link to full text
Abstract: Optogenetics is a powerful method for studying dynamic processes in living cells and has advanced cell biology research over the recent past. Key to the successful application of optogenetics is the careful design of the light‐sensing module, typically employing a natural or engineered photoreceptor that links the exogenous light input to the cellular process under investigation. Light–oxygen–voltage (LOV) domains, a highly diverse class of small blue light sensors, have proven to be particularly versatile for engineering optogenetic input modules. These can function via diverse modalities, including inducible allostery, protein recruitment, dimerization, or dissociation. This study reviews recent advances in the development of LOV domain‐based optogenetic tools and their application for studying and controlling selected cellular functions. Focusing on the widely employed LOV2 domain from Avena sativa phototropin‐1, this review highlights the broad spectrum of engineering opportunities that can be explored to achieve customized optogenetic regulation. Finally, major bottlenecks in the development of optogenetic methods are discussed and strategies to overcome these with recent synthetic biology approaches are pointed out.
Submit a new publication to our database