Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

Phosphofructokinase Relocalizes into Subcellular Compartments with Liquid-like Properties In Vivo.

blue CRY2olig C. elegans in vivo Organelle manipulation
Biophys J, 12 Aug 2020 DOI: 10.1016/j.bpj.2020.08.002 Link to full text
Abstract: Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.
2.

Following Optogenetic Dimerizers and Quantitative Prospects.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biophys J, 17 Aug 2016 DOI: 10.1016/j.bpj.2016.07.040 Link to full text
Abstract: Optogenetics describes the use of genetically encoded photosensitive proteins to direct intended biological processes with light in recombinant and native systems. While most of these light-responsive proteins were originally discovered in photosynthetic organisms, the past few decades have been punctuated by experiments that not only commandeer but also engineer and enhance these natural tools to explore a wide variety of physiological questions. In addition, the ability to tune dynamic range and kinetic rates of optogenetic actuators is a challenging question that is heavily explored with computational methods devised to facilitate optimization of these systems. Here, we explain the basic mechanisms of a few popular photodimerizing optogenetic systems, discuss applications, compare optogenetic tools against more traditional chemical methods, and propose a simple quantitative understanding of how actuators exert their influence on targeted processes.
3.

Optogenetics: Turning the Microscope on Its Head.

blue LOV domains Review
Biophys J, 8 Mar 2016 DOI: 10.1016/j.bpj.2016.02.011 Link to full text
Abstract: Abstract not available.
4.

Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.

blue CRY2/CIB1 HeLa NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Biophys J, 3 Nov 2015 DOI: 10.1016/j.bpj.2015.08.042 Link to full text
Abstract: Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 μm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.
Submit a new publication to our database