Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results

βH-spectrin is required for ratcheting apical pulsatile constrictions during tissue invagination.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
EMBO Rep, 26 Jun 2020 DOI: 10.15252/embr.201949858 Link to full text
Abstract: Actomyosin-mediated apical constriction drives a wide range of morphogenetic processes. Activation of myosin-II initiates pulsatile cycles of apical constrictions followed by either relaxation or stabilization (ratcheting) of the apical surface. While relaxation leads to dissipation of contractile forces, ratcheting is critical for the generation of tissue-level tension and changes in tissue shape. How ratcheting is controlled at the molecular level is unknown. Here, we show that the actin crosslinker βH-spectrin is upregulated at the apical surface of invaginating mesodermal cells during Drosophila gastrulation. βH-spectrin forms a network of filaments which co-localize with medio-apical actomyosin fibers, in a process that depends on the mesoderm-transcription factor Twist and activation of Rho signaling. βH-spectrin knockdown results in non-ratcheted apical constrictions and inhibition of mesoderm invagination, recapitulating twist mutant embryos. βH-spectrin is thus a key regulator of apical ratcheting during tissue invagination, suggesting that actin cross-linking plays a critical role in this process.

Golgi-associated microtubules are fast cargo tracks and required for persistent cell migration.

blue AsLOV2 human retinal pigment epithelium cells Control of cytoskeleton / cell motility / cell shape
EMBO Rep, 27 Jan 2020 DOI: 10.15252/embr.201948385 Link to full text
Abstract: Microtubules derived from the Golgi (Golgi MTs) have been implicated to play critical roles in persistent cell migration, but the underlying mechanisms remain elusive, partially due to the lack of direct observation of Golgi MT-dependent vesicular trafficking. Here, using super-resolution stochastic optical reconstruction microscopy (STORM), we discovered that post-Golgi cargos are more enriched on Golgi MTs and also surprisingly move much faster than on non-Golgi MTs. We found that, compared to non-Golgi MTs, Golgi MTs are morphologically more polarized toward the cell leading edge with significantly fewer inter-MT intersections. In addition, Golgi MTs are more stable and contain fewer lattice repair sites than non-Golgi MTs. Our STORM/live-cell imaging demonstrates that cargos frequently pause at the sites of both MT intersections and MT defects. Furthermore, by optogenetic maneuvering of cell direction, we demonstrate that Golgi MTs are essential for persistent cell migration but not for cells to change direction. Together, our study unveils the role of Golgi MTs in serving as a group of "fast tracks" for anterograde trafficking of post-Golgi cargos.

Optogenetic inhibition of Delta reveals digital Notch signaling output during tissue differentiation.

blue CRY2/CIB1 CRY2olig D. melanogaster in vivo Signaling cascade control
EMBO Rep, 31 Oct 2019 DOI: 10.15252/embr.201947999 Link to full text
Abstract: Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.
Submit a new publication to our database