Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 20 of 20 results

Light-regulated voltage-gated potassium channels for acute interrogation of channel function in neurons and behavior.

blue VfAU1-LOV CHO-K1 Cos-7 HEK293 Jurkat mouse CGN Xenopus oocytes Neuronal activity control
PLoS ONE, 23 Mar 2021 DOI: 10.1371/journal.pone.0248688 Link to full text
Abstract: Voltage-gated potassium (Kv) channels regulate the membrane potential and conductance of excitable cells to control the firing rate and waveform of action potentials. Even though Kv channels have been intensely studied for over 70 year, surprisingly little is known about how specific channels expressed in various neurons and their functional properties impact neuronal network activity and behavior in vivo. Although many in vivo genetic manipulations of ion channels have been tried, interpretation of these results is complicated by powerful homeostatic plasticity mechanisms that act to maintain function following perturbations in excitability. To better understand how Kv channels shape network function and behavior, we have developed a novel optogenetic technology to acutely regulate Kv channel expression with light by fusing the light-sensitive LOV domain of Vaucheria frigida Aureochrome 1 to the N-terminus of the Kv1 subunit protein to make an Opto-Kv1 channel. Recording of Opto-Kv1 channels expressed in Xenopus oocytes, mammalian cells, and neurons show that blue light strongly induces the current expression of Opto-Kv1 channels in all systems tested. We also find that an Opto-Kv1 construct containing a dominant-negative pore mutation (Opto-Kv1(V400D)) can be used to down-regulate Kv1 currents in a blue light-dependent manner. Finally, to determine whether Opto-Kv1 channels can elicit light-dependent behavioral effect in vivo, we targeted Opto-Kv1 (V400D) expression to Kv1.3-expressing mitral cells of the olfactory bulb in mice. Exposure of the bulb to blue light for 2-3 hours produced a significant increase in sensitivity to novel odors after initial habituation to a similar odor, comparable to behavioral changes seen in Kv1.3 knockout animals. In summary, we have developed novel photoactivatable Kv channels that provide new ways to interrogate neural circuits in vivo and to examine the roles of normal and disease-causing mutant Kv channels in brain function and behavior.

Optical induction of autophagy via Transcription factor EB (TFEB) reduces pathological tau in neurons.

blue EL222 HEK293T human IPSCs Neuro-2a Transgene expression
PLoS ONE, 24 Mar 2020 DOI: 10.1371/journal.pone.0230026 Link to full text
Abstract: Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer's disease (AD) and related tauopathies. Several attempts have been made to promote clearance of pathological tau (p-Tau) from neurons. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden on cellular bioenergetics and can be deleterious. Here, we modified previously described two-plasmid systems of Light Activated Protein (LAP) from bacterial transcription factor-EL222 and Light Responsive Element (LRE) to encode TFEB. Upon blue-light (465 nm) illumination, the conformation changes in LAP induced LRE-driven expression of TFEB, its nuclear entry, TFEB-mediated expression of autophagy-lysosomal genes and clearance of p-Tau from neuronal cells and AD patient-derived human iPSC-neurons. Turning the blue-light off reversed the expression of TFEB-target genes and attenuated p-Tau clearance. Together, these results suggest that optically regulated TFEB expression unlocks the potential of opto-therapeutics to treat AD and other dementias.

Imaging of Morphological and Biochemical Hallmarks of Apoptosis with Optimized Optogenetic Actuators.

blue CRY2/CIB1 HEK293T HeLa Neuro-2a Cell death
PLoS ONE, 3 Oct 2019 DOI: 10.1074/jbc.ra119.009141 Link to full text
Abstract: The creation of optogenetic switches for specific activation of cell-death pathways can provide insights into apoptosis and could also form a basis for non-invasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/CIB, a blue light–activated protein–protein dimerization module from the plant Arabidopsis thaliana together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane (OMM)-targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer-membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2–BAX system (henceforth referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for the membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters for imaging key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we have created a next-generation Cry2/CIB–BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.

A size-invariant bud-duration timer enables robustness in yeast cell size control.

red PhyB/PIF6 S. cerevisiae Cell cycle control
PLoS ONE, 21 Dec 2018 DOI: 10.1371/journal.pone.0209301 Link to full text
Abstract: Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant 'timer' specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.

A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions.

blue AsLOV2 MCF10A Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
PLoS ONE, 26 Mar 2018 DOI: 10.1371/journal.pone.0194716 Link to full text
Abstract: De novo formation of epithelial cell-cell contacts relies on actin-based protrusions as well as tightly controlled turnover of junctional actin once cells encounter each other and adhesion complexes assemble. The specific contributions of individual actin regulators on either protrusion formation or junctional actin turnover remain largely unexplored. Based on our previous findings of Formin-like 2 (FMNL2)-mediated control of junctional actin dynamics, we investigated its potential role in membrane protrusions and impact on newly forming epithelial contacts. CRISPR/Cas9-mediated loss of FMNL2 in human MCF10A cells combined with optogenetic control of Rac1 activity confirmed its critical function in the establishment of intercellular contacts. While lamellipodial protrusion rates remained unaffected, FMNL2 knockout cells were characterized by impaired filopodia formation similar to depletion of the Rho GTPase Cdc42. Silencing of Cdc42, however, failed to affect FMNL2-mediated contact formation. Hence, we propose a cell-cell contact-specific and Rac1-mediated function of FMNL2 entirely independent of Cdc42. Consistent with this, direct visualizations of native epithelial junction formation revealed a striking and specifically Rac1- and not Cdc42-dependent recruitment of FMNL2 to newly forming junctions as well as established cell-cell contacts within epithelial sheets.

A novel optogenetically tunable frequency modulating oscillator.

green violet CcaS/CcaR UirS/UirR in silico
PLoS ONE, 1 Feb 2018 DOI: 10.1371/journal.pone.0183242 Link to full text
Abstract: Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress.

blue CRY2/CIB1 NIH/3T3 PC-12 Signaling cascade control
PLoS ONE, 15 Apr 2016 DOI: 10.1371/journal.pone.0153487 Link to full text
Abstract: Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress.

Optogenetic Control of Gene Expression in Drosophila.

blue CRY2/CIB1 D. melanogaster in vivo Schneider 2 Transgene expression Neuronal activity control
PLoS ONE, 18 Sep 2015 DOI: 10.1371/journal.pone.0138181 Link to full text
Abstract: To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

An Engineered Split Intein for Photoactivated Protein Trans-Splicing.

blue AsLOV2 E. coli HeLa Control of cytoskeleton / cell motility / cell shape Cell death
PLoS ONE, 28 Aug 2015 DOI: 10.1371/journal.pone.0135965 Link to full text
Abstract: Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.

Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation.

blue AsLOV2 C. elegans in vivo Cos-7 HEK293 HeLa S. cerevisiae Developmental processes
PLoS ONE, 17 Jun 2015 DOI: 10.1371/journal.pone.0128443 Link to full text
Abstract: Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo.

Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.

blue LOV domains Background
PLoS ONE, 24 Jul 2014 DOI: 10.1371/journal.pone.0103307 Link to full text
Abstract: Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV) domain and a basic zipper (bZIP) domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR) difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA.

Rac1-dependent lamellipodial motility in prostate cancer PC-3 cells revealed by optogenetic control of Rac1 activity.

blue AsLOV2 PC-3 Control of cytoskeleton / cell motility / cell shape
PLoS ONE, 21 May 2014 DOI: 10.1371/journal.pone.0097749 Link to full text
Abstract: The lamellipodium, an essential structure for cell migration, plays an important role in the invasion and metastasis of cancer cells. Although Rac1 recognized as a key player in the formation of lamellipodia, the molecular mechanisms underlying lamellipodial motility are not fully understood. Optogenetic technology enabled us to spatiotemporally control the activity of photoactivatable Rac1 (PA-Rac1) in living cells. Using this system, we revealed the role of phosphatidylinositol 3-kinase (PI3K) in Rac1-dependent lamellipodial motility in PC-3 prostate cancer cells. Through local blue laser irradiation of PA-Rac1-expressing cells, lamellipodial motility was reversibly induced. First, outward extension of a lamellipodium parallel to the substratum was observed. The extended lamellipodium then showed ruffling activity at the periphery. Notably, PI(3,4,5)P3 and WAVE2 were localized in the extending lamellipodium in a PI3K-dependent manner. We confirmed that the inhibition of PI3K activity greatly suppressed lamellipodial extension, while the ruffling activity was less affected. These results suggest that Rac1-induced lamellipodial motility consists of two distinct activities, PI3K-dependent outward extension and PI3K-independent ruffling.

Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth.

blue CRY2/CIB1 NIH/3T3 PC-12 Signaling cascade control Cell differentiation
PLoS ONE, 25 Mar 2014 DOI: 10.1371/journal.pone.0092917 Link to full text
Abstract: It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network.

Factors that control the chemistry of the LOV domain photocycle.

blue LOV domains Background
PLoS ONE, 27 Jan 2014 DOI: 10.1371/journal.pone.0087074 Link to full text
Abstract: Algae, plants, bacteria and fungi contain Light-Oxygen-Voltage (LOV) domains that function as blue light sensors to control cellular responses to light. All LOV domains contain a bound flavin chromophore that is reduced upon photon absorption and forms a reversible, metastable covalent bond with a nearby cysteine residue. In Avena sativa LOV2 (AsLOV2), the photocycle is accompanied by an allosteric conformational change that activates the attached phototropin kinase in the full-length protein. Both the conformational change and formation of the cysteinyl-flavin adduct are stabilized by the reduction of the N5 atom in the flavin's isoalloxazine ring. In this study, we perform a mutational analysis to investigate the requirements for LOV2 to photocycle. We mutated all the residues that interact with the chromophore isoalloxazine ring to inert functional groups but none could fully inhibit the photocycle except those to the active-site cysteine. However, electronegative side chains in the vicinity of the chromophore accelerate the N5 deprotonation and the return to the dark state. Mutations to the N414 and Q513 residues identify a potential water gate and H₂O coordination sites. These residues affect the electronic nature of the chromophore and photocycle time by helping catalyze the N5 reduction leading to the completion of the photocycle. In addition, we demonstrate that dehydration leads to drastically slower photocycle times. Finally, to investigate the requirements of an active-site cysteine for photocycling, we moved the nearby cysteine to alternative locations and found that some variants can still photocycle. We propose a new model of the LOV domain photocycle that involves all of these components.

Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins.

blue LOV domains Background
PLoS ONE, 18 Dec 2013 DOI: 10.1371/journal.pone.0082693 Link to full text
Abstract: Light-oxygen-voltage (LOV) domains function as blue light-inducible molecular switches. The photosensory LOV domains derived from plants and fungi have provided an indispensable tool for optogenetics. Here we develop a high-throughput screening system to efficiently improve switch-off kinetics of LOV domains. The present system is based on fluorescence imaging of thermal reversion of a flavin cofactor bound to LOV domains. We conducted multi site-directed random mutagenesis of seven amino acid residues surrounding the flavin cofactor of the second LOV domain derived from Avena sativa phototropin 1 (AsLOV2). The gene library was introduced into Escherichia coli cells. Then thermal reversion of AsLOV2 variants, respectively expressed in different bacterial colonies on agar plate, was imaged with a stereoscopic fluorescence microscope. Based on the mutagenesis and imaging-based screening, we isolated 12 different variants showing substantially faster thermal reversion kinetics than wild-type AsLOV2. Among them, AsLOV2-V416T exhibited thermal reversion with a time constant of 2.6 s, 21-fold faster than wild-type AsLOV2. With a slight modification of the present approach, we also have efficiently isolated 8 different decelerated variants, represented by AsLOV2-V416L that exhibited thermal reversion with a time constant of 4.3 × 10(3) s (78-fold slower than wild-type AsLOV2). The present approach based on fluorescence imaging of the thermal reversion of the flavin cofactor is generally applicable to a variety of blue light-inducible molecular switches and may provide a new opportunity for the development of molecular tools for emerging optogenetics.

LOV takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis.

blue LOV domains Background
PLoS ONE, 21 Nov 2013 DOI: 10.1371/journal.pone.0081268 Link to full text
Abstract: LOV domains act as versatile photochromic switches servicing multiple effector domains in a variety of blue light sensing photoreceptors abundant in a multitude of organisms from all kingdoms of life. The perception of light is realized by a flavin chromophore that upon illumination reversibly switches from the non-covalently bound dark-state to a covalently linked flavin-LOV adduct. It is usually assumed that most LOV domains preferably bind FMN, but heterologous expression frequently results in the incorporation of all natural occurring flavins, i.e. riboflavin, FMN and FAD. Over recent years, the structures, photochemical properties, activation mechanisms and physiological functions of a multitude of LOV proteins have been studied intensively, but little is known about its affinities to physiologically relevant flavins or the thermodynamics of the flavin-LOV interaction. We have investigated the interaction of the LOV domain of the well characterized bacterial photoreceptor YtvA with riboflavin, FMN and FAD by ITC experiments providing binding constants and thermodynamic profiles of these interactions. For this purpose, we have developed a protocol for the production of the apo forms of YtvA and its isolated LOV domain and we demonstrate that the latter can be used as a molecular probe for free flavins in cell lysates. Furthermore, we show here using NMR spectroscopic techniques and Analytical Ultracentrifugation that the flavin moiety stabilizes the conformation of the LOV domain and that dimerization of YtvA is caused not only by intermolecular LOV-LOV but also by STAS-STAS contacts.

Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.

blue CRY2/CIB1 HEK293 primary mouse hippocampal neurons Control of cytoskeleton / cell motility / cell shape
PLoS ONE, 7 Aug 2013 DOI: 10.1371/journal.pone.0070861 Link to full text
Abstract: Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is highly regulated in a spatiotemporal manner and plays multiple roles in individual cells. However, the local dynamics and primary functions of PIP3 in developing neurons remain unclear because of a lack of techniques for manipulating PIP3 spatiotemporally. We addressed this issue by combining optogenetic control and observation of endogenous PIP3 signaling. Endogenous PIP3 was abundant in actin-rich structures such as growth cones and "waves", and PIP3-rich plasma membranes moved actively within growth cones. To study the role of PIP3 in developing neurons, we developed a PI3K photoswitch that can induce production of PIP3 at specific locations upon blue light exposure. We succeeded in producing PIP3 locally in mouse hippocampal neurons. Local PIP3 elevation at neurite tips did not induce neurite elongation, but it was sufficient to induce the formation of filopodia and lamellipodia. Interestingly, ectopic PIP3 elevation alone activated membranes to form actin-based structures whose behavior was similar to that of growth-cone-like "waves". We also found that endocytosis regulates effective PIP3 concentration at plasma membranes. These results revealed the local dynamics and primary functions of PIP3, providing fundamental information about PIP3 signaling in neurons.

Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state.

red Phytochromes Background
PLoS ONE, 26 Dec 2012 DOI: 10.1371/journal.pone.0052418 Link to full text
Abstract: Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel 'head-to-head' arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response.

Optogenetic control of transcription in zebrafish.

blue CRY2/CIB1 S. cerevisiae zebrafish in vivo
PLoS ONE, 30 Nov 2012 DOI: 10.1371/journal.pone.0050738 Link to full text
Abstract: Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2) and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1). We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.

An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology.

red Phytochromes Background
PLoS ONE, 19 May 2010 DOI: 10.1371/journal.pone.0010721 Link to full text
Abstract: Plants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes.
Submit a new publication to our database