Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

T cells selectively filter oscillatory signals on the minutes timescale.

blue iLID human T cells Signaling cascade control
Proc Natl Acad Sci U S A, 2 Mar 2021 DOI: 10.1073/pnas.2019285118 Link to full text
Abstract: T cells experience complex temporal patterns of stimulus via receptor-ligand-binding interactions with surrounding cells. From these temporal patterns, T cells are able to pick out antigenic signals while establishing self-tolerance. Although features such as duration of antigen binding have been examined, our understanding of how T cells interpret signals with different frequencies or temporal stimulation patterns is relatively unexplored. We engineered T cells to respond to light as a stimulus by building an optogenetically controlled chimeric antigen receptor (optoCAR). We discovered that T cells respond to minute-scale oscillations of activation signal by stimulating optoCAR T cells with tunable pulse trains of light. Systematically scanning signal oscillation period from 1 to 150 min revealed that expression of CD69, a T cell activation marker, reached a local minimum at a period of ∼25 min (corresponding to 5 to 15 min pulse widths). A combination of inhibitors and genetic knockouts suggest that this frequency filtering mechanism lies downstream of the Erk signaling branch of the T cell response network and may involve a negative feedback loop that diminishes Erk activity. The timescale of CD69 filtering corresponds with the duration of T cell encounters with self-peptide-presenting APCs observed via intravital imaging in mice, indicating a potential functional role for temporal filtering in vivo. This study illustrates that the T cell signaling machinery is tuned to temporally filter and interpret time-variant input signals in discriminatory ways.
2.

Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse.

blue red CRY2/CIB1 Magnets PhyB/PIF3 VVD HEK293T HeLa HEp-2 mouse in vivo SH-SY5Y Nucleic acid editing
Proc Natl Acad Sci U S A, 14 Dec 2020 DOI: 10.1073/pnas.2003991117 Link to full text
Abstract: Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.
3.

β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells.

blue CRY2/CRY2 rat hippocampal NSCs Cell differentiation
Proc Natl Acad Sci U S A, 2 Nov 2020 DOI: 10.1073/pnas.2008509117 Link to full text
Abstract: Stem cells undergo differentiation in complex and dynamic environments wherein instructive signals fluctuate on various timescales. Thus, cells must be equipped to properly respond to the timing of signals, for example, to distinguish sustained signaling from transient noise. However, how stem cells respond to dynamic variations in differentiation cues is not well characterized. Here, we use optogenetic activation of β-catenin signaling to probe the dynamic responses of differentiating adult neural stem cells (NSCs). We discover that, while elevated, sustained β-catenin activation sequentially promotes proliferation and differentiation, transient β-catenin induces apoptosis. Genetic perturbations revealed that the neurogenic/apoptotic fate switch was mediated through cell-cycle regulation by Growth Arrest and DNA Damage 45 gamma (Gadd45γ). Our results thus reveal a role for β-catenin dynamics in NSC fate decisions and may suggest a role for signal timing to minimize cell-fate errors, analogous to kinetic proofreading of stem-cell differentiation.
4.

Optogenetic regulation of embryo implantation in mice using photoactivatable CRISPR-Cas9.

blue Magnets mouse in vivo Nucleic acid editing
Proc Natl Acad Sci U S A, 2 Nov 2020 DOI: 10.1073/pnas.2016850117 Link to full text
Abstract: Embryo implantation is achieved upon successful interaction between a fertilized egg and receptive endometrium and is mediated by spatiotemporal expression of implantation-associated molecules including leukemia inhibitory factor (LIF). Here we demonstrate, in mice, that LIF knockdown via a photoactivatable CRISPR-Cas9 gene editing system and illumination with a light-emitting diode can spatiotemporally disrupt fertility. This system enables dissection of spatiotemporal molecular mechanisms associated with embryo implantation and provides a therapeutic strategy for temporal control of reproductive functions in vivo.
Submit a new publication to our database