Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 33 results

Photocontrollable mononegaviruses.

blue Magnets BHK-21 mouse in vivo Vero/hSLAM Nucleic acid editing
Proc Natl Acad Sci USA, 28 May 2019 DOI: 10.1073/pnas.1906531116 Link to full text
Abstract: Mononegaviruses are promising tools as oncolytic vectors and transgene delivery vectors for gene therapy and regenerative medicine. By using the Magnet proteins, which reversibly heterodimerize upon blue light illumination, photocontrollable mononegaviruses (measles and rabies viruses) were generated. The Magnet proteins were inserted into the flexible domain of viral polymerase, and viruses showed strong replication and oncolytic activities only when the viral polymerases were activated by blue light illumination.

Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids.

blue BcLOV4 HEK293T in vitro S. cerevisiae
Proc Natl Acad Sci USA, 31 Jul 2018 DOI: 10.1073/pnas.1802832115 Link to full text
Abstract: We report natural light-oxygen-voltage (LOV) photoreceptors with a blue light-switched, high-affinity (KD ∼ 10-7 M), and direct electrostatic interaction with anionic phospholipids. Membrane localization of one such photoreceptor, BcLOV4 from Botrytis cinerea, is directly coupled to its flavin photocycle, and is mediated by a polybasic amphipathic helix in the linker region between the LOV sensor and its C-terminal domain of unknown function (DUF), as revealed through a combination of bioinformatics, computational protein modeling, structure-function studies, and optogenetic assays in yeast and mammalian cell line expression systems. In model systems, BcLOV4 rapidly translocates from the cytosol to plasma membrane (∼1 second). The reversible electrostatic interaction is nonselective among anionic phospholipids, exhibiting binding strengths dependent on the total anionic content of the membrane without preference for a specific headgroup. The in vitro and cellular responses were also observed with a BcLOV4 homolog and thus are likely to be general across the dikarya LOV class, whose members are associated with regulator of G-protein signaling (RGS) domains. Natural photoreceptors are not previously known to directly associate with membrane phospholipids in a light-dependent manner, and thus this work establishes both a photosensory signal transmission mode and a single-component optogenetic tool with rapid membrane localization kinetics that approaches the diffusion limit.

Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.

blue red BphS CRY2/CIB1 HEK293 mouse in vivo Cell differentiation Endogenous gene expression Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jul 2018 DOI: 10.1073/pnas.1802448115 Link to full text
Abstract: The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2 This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.

Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions.

blue miniSOG C. elegans in vivo Cell death
Proc Natl Acad Sci USA, 23 Apr 2018 DOI: 10.1073/pnas.1717022115 Link to full text
Abstract: Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.

Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression.

blue YtvA E. coli Transgene expression Control of cell-cell / cell-material interactions
Proc Natl Acad Sci USA, 19 Mar 2018 DOI: 10.1073/pnas.1720676115 Link to full text
Abstract: Bacterial biofilms represent a promising opportunity for engineering of microbial communities. However, our ability to control spatial structure in biofilms remains limited. Here we engineerEscherichia coliwith a light-activated transcriptional promoter (pDawn) to optically regulate expression of an adhesin gene (Ag43). When illuminated with patterned blue light, long-term viable biofilms with spatial resolution down to 25 μm can be formed on a variety of substrates and inside enclosed culture chambers without the need for surface pretreatment. A biophysical model suggests that the patterning mechanism involves stimulation of transiently surface-adsorbed cells, lending evidence to a previously proposed role of adhesin expression during natural biofilm maturation. Overall, this tool-termed "Biofilm Lithography"-has distinct advantages over existing cell-depositing/patterning methods and provides the ability to grow structured biofilms, with applications toward an improved understanding of natural biofilm communities, as well as the engineering of living biomaterials and bottom-up approaches to microbial consortia design.

Light-activated protein interaction with high spatial subcellular confinement.

blue CRY2/CIB1 iLID Magnets Cos-7 HeLa human primary dermal fibroblasts primary mouse cortical neurons primary mouse hippocampal neurons Benchmarking
Proc Natl Acad Sci USA, 20 Feb 2018 DOI: 10.1073/pnas.1713845115 Link to full text
Abstract: Methods to acutely manipulate protein interactions at the subcellular level are powerful tools in cell biology. Several blue-light-dependent optical dimerization tools have been developed. In these systems one protein component of the dimer (the bait) is directed to a specific subcellular location, while the other component (the prey) is fused to the protein of interest. Upon illumination, binding of the prey to the bait results in its subcellular redistribution. Here, we compared and quantified the extent of light-dependent dimer occurrence in small, subcellular volumes controlled by three such tools: Cry2/CIB1, iLID, and Magnets. We show that both the location of the photoreceptor protein(s) in the dimer pair and its (their) switch-off kinetics determine the subcellular volume where dimer formation occurs and the amount of protein recruited in the illuminated volume. Efficient spatial confinement of dimer to the area of illumination is achieved when the photosensitive component of the dimerization pair is tethered to the membrane of intracellular compartments and when on and off kinetics are extremely fast, as achieved with iLID or Magnets. Magnets and the iLID variants with the fastest switch-off kinetics induce and maintain protein dimerization in the smallest volume, although this comes at the expense of the total amount of dimer. These findings highlight the distinct features of different optical dimerization systems and will be useful guides in the choice of tools for specific applications.

Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.

red PhyB/PIF3 PhyB/PIF6 HEK293T HeLa mESCs Signaling cascade control
Proc Natl Acad Sci USA, 24 Oct 2017 DOI: 10.1073/pnas.1707190114 Link to full text
Abstract: Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.

Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.

blue AsLOV2 D. melanogaster in vivo in vitro Cell death Developmental processes
Proc Natl Acad Sci USA, 11 Sep 2017 DOI: 10.1073/pnas.1705064114 Link to full text
Abstract: The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.

Molecular mechanism of photoactivation of a light-regulated adenylate cyclase.

blue BLUF domains Background
Proc Natl Acad Sci USA, 24 Jul 2017 DOI: 10.1073/pnas.1704391114 Link to full text
Abstract: The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) detects light through a flavin chromophore within the N-terminal BLUF domain. BLUF domains have been found in a number of different light-activated proteins, but with different relative orientations. The two BLUF domains of OaPAC are found in close contact with each other, forming a coiled coil at their interface. Crystallization does not impede the activity switching of the enzyme, but flash cooling the crystals to cryogenic temperatures prevents the signature spectral changes that occur on photoactivation/deactivation. High-resolution crystallographic analysis of OaPAC in the fully activated state has been achieved by cryocooling the crystals immediately after light exposure. Comparison of the isomorphous light- and dark-state structures shows that the active site undergoes minimal changes, yet enzyme activity may increase up to 50-fold, depending on conditions. The OaPAC models will assist the development of simple, direct means to raise the cyclic AMP levels of living cells by light, and other tools for optogenetics.

B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release.

green TtCBD in vitro Control of cell-cell / cell-material interactions
Proc Natl Acad Sci USA, 22 May 2017 DOI: 10.1073/pnas.1621350114 Link to full text
Abstract: Thanks to the precise control over their structural and functional properties, genetically engineered protein-based hydrogels have emerged as a promising candidate for biomedical applications. Given the growing demand for creating stimuli-responsive "smart" hydrogels, here we show the synthesis of entirely protein-based photoresponsive hydrogels by covalently polymerizing the adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) proteins using genetically encoded SpyTag-SpyCatcher chemistry under mild physiological conditions. The resulting hydrogel composed of physically self-assembled CarHC polymers exhibited a rapid gel-sol transition on light exposure, which enabled the facile release/recovery of 3T3 fibroblasts and human mesenchymal stem cells (hMSCs) from 3D cultures while maintaining their viability. A covalently cross-linked CarHC hydrogel was also designed to encapsulate and release bulky globular proteins, such as mCherry, in a light-dependent manner. The direct assembly of stimuli-responsive proteins into hydrogels represents a versatile strategy for designing dynamically tunable materials.

Investigations of human myosin VI targeting using optogenetically controlled cargo loading.

blue AsLOV2 HeLa in vitro Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Proc Natl Acad Sci USA, 13 Feb 2017 DOI: 10.1073/pnas.1614716114 Link to full text
Abstract: Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca(2+), lipid, and protein cargo signals in the cell to deploy in a site-specific manner.

Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

blue bPAC (BlaC) euPAC OaPAC E. coli HEK293 in vitro rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Proc Natl Acad Sci USA, 31 May 2016 DOI: 10.1073/pnas.1517520113 Link to full text
Abstract: Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit.

Functional and topological diversity of LOV domain photoreceptors.

blue LOV domains Background
Proc Natl Acad Sci USA, 29 Feb 2016 DOI: 10.1073/pnas.1509428113 Link to full text
Abstract: Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.

Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

blue AsLOV2 HeLa Neuro-2a primary mouse cortical neurons Cell differentiation Endogenous gene expression Neuronal activity control
Proc Natl Acad Sci USA, 23 Dec 2015 DOI: 10.1073/pnas.1507355112 Link to full text
Abstract: Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

Iterative experiment design guides the characterization of a light-inducible gene expression circuit.

red PhyB/PIF3 S. cerevisiae
Proc Natl Acad Sci USA, 17 Jun 2015 DOI: 10.1073/pnas.1423947112 Link to full text
Abstract: Systems biology rests on the idea that biological complexity can be better unraveled through the interplay of modeling and experimentation. However, the success of this approach depends critically on the informativeness of the chosen experiments, which is usually unknown a priori. Here, we propose a systematic scheme based on iterations of optimal experiment design, flow cytometry experiments, and Bayesian parameter inference to guide the discovery process in the case of stochastic biochemical reaction networks. To illustrate the benefit of our methodology, we apply it to the characterization of an engineered light-inducible gene expression circuit in yeast and compare the performance of the resulting model with models identified from nonoptimal experiments. In particular, we compare the parameter posterior distributions and the precision to which the outcome of future experiments can be predicted. Moreover, we illustrate how the identified stochastic model can be used to determine light induction patterns that make either the average amount of protein or the variability in a population of cells follow a desired profile. Our results show that optimal experiment design allows one to derive models that are accurate enough to precisely predict and regulate the protein expression in heterogeneous cell populations over extended periods of time.

Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling.

blue CRY2/CIB1 MCF7 Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci USA, 5 Jan 2015 DOI: 10.1073/pnas.1409667112 Link to full text
Abstract: Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction.

Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.

blue AsLOV2 iLID in vitro mouse IA32 fibroblasts Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci USA, 22 Dec 2014 DOI: 10.1073/pnas.1417910112 Link to full text
Abstract: The discovery of light-inducible protein-protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.

Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

red Phytochromes Background
Proc Natl Acad Sci USA, 30 Jun 2014 DOI: 10.1073/pnas.1403096111 Link to full text
Abstract: Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.

Engineering adenylate cyclases regulated by near-infrared window light.

red IlaC C. elegans in vivo E. coli in vitro Immediate control of second messengers Neuronal activity control
Proc Natl Acad Sci USA, 30 Jun 2014 DOI: 10.1073/pnas.1324301111 Link to full text
Abstract: Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IXα, is naturally present in animal cells. These properties make bacteriophytochromes particularly attractive for optogenetic applications. However, the lack of understanding of how light-induced conformational changes control output activities has hindered engineering of bacteriophytochrome-based optogenetic tools. Many bacteriophytochromes function as homodimeric enzymes, in which light-induced conformational changes are transferred via α-helical linkers to the rigid output domains. We hypothesized that heterologous output domains requiring homodimerization can be fused to the photosensory modules of bacteriophytochromes to generate light-activated fusions. Here, we tested this hypothesis by engineering adenylate cyclases regulated by light in the near-infrared spectral window using the photosensory module of the Rhodobacter sphaeroides bacteriophytochrome BphG1 and the adenylate cyclase domain from Nostoc sp. CyaB1. We engineered several light-activated fusion proteins that differed from each other by approximately one or two α-helical turns, suggesting that positioning of the output domains in the same phase of the helix is important for light-dependent activity. Extensive mutagenesis of one of these fusions resulted in an adenylate cyclase with a sixfold photodynamic range. Additional mutagenesis produced an enzyme with a more stable photoactivated state. When expressed in cholinergic neurons in Caenorhabditis elegans, the engineered adenylate cyclase affected worm behavior in a light-dependent manner. The insights derived from this study can be applied to the engineering of other homodimeric bacteriophytochromes, which will further expand the optogenetic toolset.

Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

red LAPD CHO in vitro zebrafish in vivo Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jun 2014 DOI: 10.1073/pnas.1321600111 Link to full text
Abstract: Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.

Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.

blue Cryptochromes Background
Proc Natl Acad Sci USA, 7 Oct 2013 DOI: 10.1073/pnas.1308987110 Link to full text
Abstract: Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light-oxygen-voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms.

RasGRF2 Rac-GEF activity couples NMDA receptor calcium flux to enhanced synaptic transmission.

blue AsLOV2 rat hippocampal neurons Neuronal activity control
Proc Natl Acad Sci USA, 12 Aug 2013 DOI: 10.1073/pnas.1304340110 Link to full text
Abstract: Dendritic spines are the primary sites of excitatory synaptic transmission in the vertebrate brain, and the morphology of these actin-rich structures correlates with synaptic function. Here we demonstrate a unique method for inducing spine enlargement and synaptic potentiation in dispersed hippocampal neurons, and use this technique to identify a coordinator of these processes; Ras-specific guanine nucleotide releasing factor 2 (RasGRF2). RasGRF2 is a dual Ras/Rac guanine nucleotide exchange factor (GEF) that is known to be necessary for long-term potentiation in situ. Contrary to the prevailing assumption, we find RasGRF2's Rac-GEF activity to be essential for synaptic potentiation by using a molecular replacement strategy designed to dissociate Rac- from Ras-GEF activities. Furthermore, we demonstrate that Rac1 activity itself is sufficient to rapidly modulate postsynaptic strength by using a photoactivatable derivative of this small GTPase. Because Rac1 is a major actin regulator, our results support a model where the initial phase of long-term potentiation is driven by the cytoskeleton.

Optogenetic control of phosphoinositide metabolism.

blue CRY2/CIB1 Cos-7 PC-12 Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
Proc Natl Acad Sci USA, 30 Jul 2012 DOI: 10.1073/pnas.1211305109 Link to full text
Abstract: Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.

Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG.

blue miniSOG C. elegans in vivo Cell death Developmental processes
Proc Natl Acad Sci USA, 24 Apr 2012 DOI: 10.1073/pnas.1204096109 Link to full text
Abstract: We describe a method for light-inducible and tissue-selective cell ablation using a genetically encoded photosensitizer, miniSOG (mini singlet oxygen generator). miniSOG is a newly engineered fluorescent protein of 106 amino acids that generates singlet oxygen in quantum yield upon blue-light illumination. We transgenically expressed mitochondrially targeted miniSOG (mito-miniSOG) in Caenorhabditis elegans neurons. Upon blue-light illumination, mito-miniSOG causes rapid and effective death of neurons in a cell-autonomous manner without detectable damages to surrounding tissues. Neuronal death induced by mito-miniSOG appears to be independent of the caspase CED-3, but the clearance of the damaged cells partially depends on the phagocytic receptor CED-1, a homolog of human CD91. We show that neurons can be killed at different developmental stages. We further use this method to investigate the role of the premotor interneurons in regulating the convulsive behavior caused by a gain-of-function mutation in the neuronal acetylcholine receptor acr-2. Our findings support an instructive role for the interneuron AVB in controlling motor neuron activity and reveal an inhibitory effect of the backward premotor interneurons on the forward interneurons. In summary, the simple inducible cell ablation method reported here allows temporal and spatial control and will prove to be a useful tool in studying the function of specific cells within complex cellular contexts.

Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels.

blue FKF1/GI mouse cardiomyocytes rat cardiomyocytes tsA201 Immediate control of second messengers
Proc Natl Acad Sci USA, 17 Jan 2012 DOI: 10.1073/pnas.1116731109 Link to full text
Abstract: Ca(2+) influx via L-type Ca(v)1.2 channels is essential for multiple physiological processes, including gene expression, excitability, and contraction. Amplification of the Ca(2+) signals produced by the opening of these channels is a hallmark of many intracellular signaling cascades, including excitation-contraction coupling in heart. Using optogenetic approaches, we discovered that Ca(v)1.2 channels form clusters of varied sizes in ventricular myocytes. Physical interaction between these channels via their C-tails renders them capable of coordinating their gating, thereby amplifying Ca(2+) influx and excitation-contraction coupling. Light-induced fusion of WT Ca(v)1.2 channels with Ca(v)1.2 channels carrying a gain-of-function mutation that causes arrhythmias and autism in humans with Timothy syndrome (Ca(v)1.2-TS) increased Ca(2+) currents, diastolic and systolic Ca(2+) levels, contractility and the frequency of arrhythmogenic Ca(2+) fluctuations in ventricular myocytes. Our data indicate that these changes in Ca(2+) signaling resulted from Ca(v)1.2-TS increasing the activity of adjoining WT Ca(v)1.2 channels. Collectively, these data support the concept that oligomerization of Ca(v)1.2 channels via their C termini can result in the amplification of Ca(2+) influx into excitable cells.
Submit a new publication to our database