Qr: switch:"CRY2clust"
Showing 1 - 25 of 52 results
1.
FLASH-AWAY: Intrabody-Directed Targeting of Optogenetic Tools for Protein Degradation.
Abstract:
Protein homeostasis, or proteostasis, is essential for cellular proteins to function properly. The buildup of abnormal proteins (such as damaged, misfolded, or aggregated proteins) is associated with many diseases, including cancer. Therefore, maintaining proteostasis is critical for cellular health. Currently, genetic methods for modulating proteostasis, such as RNA interference and CRISPR knockout, lack spatial and temporal precision. They are also not suitable for depleting already-synthesized proteins. Similarly, molecular tools like PROTACs and molecular glue face challenges in drug design and discovery. To directly control targeted protein degradation within cells, we introduce an intrabody-based optogenetic toolbox named Flash-Away. Flash-Away integrates the light-responsive ubiquitination activity of the RING domain of TRIM21 for protein degradation, coupled with specific intrabodies for precise targeting. Upon exposure to blue light, Flash-Away enables rapid and targeted degradation of selected proteins. This versatility is demonstrated through successful application to diverse protein targets, including actin, MLKL, and ALFA-tag fused proteins. This innovative light-inducible protein degradation system offers a powerful approach to investigate the functions of specific proteins within physiological contexts. Moreover, Flash-Away presents potential opportunities for clinical translational research and precise medical interventions, advancing the prospects of precision medicine.
2.
Breaking barriers: The cGAS-STING pathway as a novel frontier in cancer immunotherapy.
Abstract:
Since its discovery, the cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon gene (STING) signaling pathway has been considered a pivotal component of innate immunity and a promising target for cancer immunotherapy. Beyond its canonical role in pathogen defense, accumulating evidence has demonstrated that the cGAS-STING pathway critically regulates diverse cellular processes, including cellular senescence, autophagy, cell death, and tumor immunosurveillance; therefore, dysregulation of this pathway correlates with the pathogenesis and progression of various human diseases, ranging from autoimmune and inflammatory disorders to cancer. Herein, we reviewed the regulatory mechanisms and cellular functions of the cGAS-STING pathway, highlighting its essential role in maintaining immune homeostasis. We systematically discussed the dual roles of the cGAS-STING pathway in cancer immunity, in which it triggers both antitumor and immunosuppressive effects. Finally, we summarized the recent advances and challenges in therapeutic strategies targeting the cGAS-STING pathway and discussed the next generation of therapies, including nanomaterials, antibody-drug conjugates, engineered bacteria, alternative strategies, optogenetic approaches, and combination strategies. We hope that our efforts will advance the understanding of the fundamental principles of innate immune recognition and response, and provide novel directions for improving the clinical outcomes of cGAS-STING-targeted therapies.
3.
Optogenetic control of T cells for immunomodulation.
Abstract:
Cellular immunotherapy has transformed cancer treatment by harnessing T cells to target malignant cells. However, its broader adoption is hindered by challenges such as efficacy loss, limited persistence, tumor heterogeneity, an immunosuppressive tumor microenvironment (TME), and safety concerns related to systemic adverse effects. Optogenetics, a technology that uses light-sensitive proteins to regulate cellular functions with high spatial and temporal accuracy, offers a potential solution to overcome these issues. By enabling targeted modulation of T cell receptor signaling, ion channels, transcriptional programming, and antigen recognition, optogenetics provides dynamic control over T cell activation, cytokine production, and cytotoxic responses. Moreover, optogenetic strategies can be applied to remodel the TME by selectively activating immune responses or inducing targeted immune cell depletion, thereby enhancing T cell infiltration and immune surveillance. However, practical hurdles such as limited tissue penetration of visible light and the need for cell- or tissue-specific gene delivery must be addressed for clinical translation. Emerging solutions, including upconversion nanoparticles, are being explored to improve light delivery to deeper tissues. Future integration of optogenetics with existing immunotherapies, such as checkpoint blockade and adoptive T cell therapies, could improve treatment specificity, minimize adverse effects, and provide real-time control over immune responses. By refining the precision and adaptability of immunotherapy, optogenetics promises to further enhance both the safety and efficacy of cancer immunotherapy.
4.
Multimodal Key Anti-Oncolytic Therapeutics Are Effective In Cancer Treatment?
Abstract:
Oncolytic virus (OVs) therapy has emerged as a promising modality in cancer immunotherapy, attracting growing attention for its multifaceted mechanisms of tumor elimination. However, its efficacy as a monotherapy remains constrained by physiological barriers, limited delivery routes, and suboptimal immune activation. Phototherapy, an innovative and rapidly advancing cancer treatment technology, can mitigate these limitations when used in conjunction with OVs, enhancing viral delivery, amplifying tumor destruction, and boosting antitumor immune responses. This review provides the first comprehensive analysis of synergistic integration of OVs with both photodynamic therapy (PDT) and photothermal therapy (PTT). It also explores their applications in optical imaging-guided diagnosis and optogenetically controlled delivery. Furthermore, it discusses emerging strategies involving biomimetic virus or viroid-based vectors in conjunction with phototherapy, and delves into the immunomodulatory mechanisms of this combinatorial approach. While promising in preclinical models, these combined strategies are still largely in early-stage research. Challenges such as limited light penetration, delivery efficiency, and safety concerns remain to be addressed for clinical translation. Consequently, the integration of OV therapy and phototherapy represents a compelling strategy in cancer treatment, offering significant promise for advancing precision oncology and next-generation immunotherapies.
5.
Optogenetic Clustering of Human IRE1 Reveals Differential Regulation of Transcription and mRNA Splice Isoform Abundance by the UPR.
Abstract:
Inositol-requiring enzyme 1 (IRE1) is one of three known sensor proteins that respond to homeostatic perturbations in the metazoan endoplasmic reticulum. The three sensors collectively initiate an intertwined signaling network called the Unfolded Protein Response (UPR). Although IRE1 plays pivotal roles in human health and development, understanding its specific contributions to the UPR remains a challenge due to signaling crosstalk from the other two stress sensors. To overcome this problem, we engineered a light-activatable version of IRE1 and probed the transcriptomic effects of IRE1 activity in isolation from the other branches of the UPR. We demonstrate that 1) oligomerization alone is sufficient to activate IRE1 in human cells, 2) IRE1's transcriptional response evolves substantially under prolonged activation, and 3) the UPR induces major changes in mRNA splice isoform abundance in an IRE1-independent manner. Our data reveal previously unknown targets of IRE1 transcriptional regulation and direct degradation. Additionally, the tools developed here will be broadly applicable for precise dissection of signaling networks in diverse cell types, tissues, and organisms.
6.
Optogenetic perturbation of lipid droplet localization affects lipid metabolism and development in Drosophila.
Abstract:
Lipid droplets (LDs) are dynamic organelles crucial for lipid storage and homeostasis. Despite extensive documentation of their importance, the causal relationship between LD localization and function in health and disease remains inadequately understood. Here, we developed optogenetics-based tools, termed "Opto-LDs," which facilitate the interaction between LDs and motor proteins in a light-dependent manner, enabling precise control of LD localization within cells. Utilizing these optogenetic modules, we demonstrated that light-induced relocation of LDs to the periphery of hepatocytes results in elevated very-low-density lipoprotein (VLDL) secretion, recapturing the beneficial effect of insulin in vitro. Furthermore, our studies in transgenic Drosophila revealed that proper LD localization is critical for embryonic development, with mistargeting of LDs significantly affecting egg hatching success. In summary, our work underscores the great importance of LD localization in lipid metabolism and development, and our developed tools offer valuable insights into the functions of LDs in health and disease.
7.
Protein phase change batteries drive innate immune signaling and cell fate.
-
Rodriguez Gama, A
-
Miller, T
-
Venkatesan, S
-
Lange, JJ
-
Wu, J
-
Song, X
-
Bradford, D
-
Cook, M
-
Unruh, JR
-
Halfmann, R
Abstract:
How minute pathogenic signals trigger decisive immune responses is a fundamental question in biology. Classical signaling often relies on ATP-driven enzymatic cascades, but innate immunity frequently employs death fold domain (DFD) self-assembly. The energetic basis of this assembly is unknown. Here, we show that specific DFDs function as energy reservoirs through metastable supersaturation. Characterizing all 109 human DFDs, we identified sequence-encoded nucleation barriers specifically in the central adaptors of inflammatory signalosomes, allowing them to accumulate far above their saturation concentration while remaining soluble and poised for activation. We demonstrate that the inflammasome adaptor ASC is constitutively supersaturated in vivo, retaining energy to power on-demand cell death. Swapping a non-supersaturable DFD in the apoptosome with a supersaturable one sensitized cells to sublethal stimuli. Mapping all DFD nucleating interactions revealed that supersaturated adaptors are specifically templated by other DFDs in their respective pathways, limiting deleterious crosstalk. Across human cell types, adaptor supersaturation strongly correlates with cell turnover, implicating this thermodynamic principle in the trade-off between immunity and longevity. Profiling homologues from fish, sponge, and bacteria, we find nucleation barriers to be ancestrally conserved. These findings reveal DFD adaptors as biological phase-change materials that function like batteries, storing and privatizing energy for life-or-death decisions.
8.
POT, an optogenetics-based endogenous protein degradation system.
Abstract:
Precise regulation of protein abundance is critical for cellular homeostasis, whose dysfunction may directly lead to human diseases. Optogenetics allows rapid and reversible control of precisely defined cellular processes, which has the potential to be utilized for regulation of protein dynamics at various scales. Here, we developed a novel optogenetics-based protein degradation system, namely Peptide-mediated OptoTrim-Away (POT) which employs expressed small peptides to effectively target endogenous and unmodified proteins. By engineering the light-induced oligomerization of the E3 ligase TRIM21, POT can rapidly trigger protein degradation via the proteasomal pathway. Our results showed that the developed POT-PI3K and POT-GPX4 modules, which used the iSH2 and FUNDC1 domains to specifically target phosphoinositide 3-kinase (PI3K) and glutathione peroxidase 4 (GPX4) respectively, were able to potently induce the degradation of these endogenous proteins by light. Both live-cell imaging and biochemical experiments validated the potency of these tools in downregulating cancer cell migration, proliferation, and even promotion of cell apoptosis. Therefore, we believe the POT offers an alternative and practical solution for rapid manipulation of endogenous protein levels, and it could potentially be employed to dissect complex signaling pathways in cell and for targeted cellular therapies.
9.
Protein design accelerates the development and application of optogenetic tools.
Abstract:
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
10.
Engineering organoids as cerebral disease models.
Abstract:
Cerebral organoids pioneered in replicating complex brain tissue architectures in vitro, offering a vast potential for human disease modeling. They enable the in vitro study of human physiological and pathophysiological mechanisms of various neurological diseases and disorders. The trajectory of technological advancements in brain organoid generation and engineering over the past decade indicates that the technology might, in the future, mature into indispensable solutions at the horizon of personalized and regenerative medicine. In this review, we highlight recent advances in the engineering of brain organoids as disease models and discuss some of the challenges and opportunities for future research in this rapidly evolving field.
11.
Optogenetic control of mitochondrial aggregation and function.
-
Zhang, L
-
Liu, X
-
Zhu, M
-
Yao, Y
-
Liu, Z
-
Zhang, X
-
Deng, X
-
Wang, Y
-
Duan, L
-
Guo, X
-
Fu, J
-
Xu, Y
Abstract:
The balance of mitochondrial fission and fusion plays an important role in maintaining the stability of cellular homeostasis. Abnormal mitochondrial fission and fragmentation have been shown to be associated with oxidative stress, which causes a variety of human diseases from neurodegeneration disease to cancer. Therefore, the induction of mitochondrial aggregation and fusion may provide an alternative approach to alleviate these conditions. Here, an optogenetic-based mitochondrial aggregation system (Opto-MitoA) developed, which is based on the CRY2clust/CIBN light-sensitive module. Upon blue light illumination, CRY2clust relocates from the cytosol to mitochondria where it induces mitochondrial aggregation by CRY2clust homo-oligomerization and CRY2clust-CIBN hetero-dimerization. Our functional experiments demonstrate that Opto-MitoA-induced mitochondrial aggregation potently alleviates niclosamide-caused cell dysfunction in ATP production. This study establishes a novel optogenetic-based strategy to regulate mitochondrial dynamics in cells, which may provide a potential therapy for treating mitochondrial-related diseases.
12.
Optogenetic Control of Condensates: Principles and Applications.
Abstract:
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
13.
Mesoscale regulation of MTOCs by the E3 ligase TRIM37.
Abstract:
Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well-established, less is known about the suppression of non-centrosomal MTOCs (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had remained unknown. Here, we elucidate TRIM37’s activation process, beginning with TRAF domain-directed substrate recognition, progressing through B-box domain-mediated oligomerization, and culminating in RING domain dimerization. Using optogenetics, we demonstrate that TRIM37’s E3 activity is directly coupled to the assembly state of its substrates, activating only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and, by echoing TRIM5’s restriction of the HIV capsid, unveils a conserved activation blueprint among TRIM proteins for controlling mesoscale assembly turnover.
14.
Stress pathway outputs are encoded by pH-dependent clustering of kinase components.
Abstract:
Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
15.
Spatiotemporal Control of Inflammatory Lytic Cell Death Through Optogenetic Induction of RIPK3 Oligomerization.
Abstract:
Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.
16.
Gene Delivery and Analysis of Optogenetic Induction of Lytic Cell Death.
Abstract:
Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.
17.
ORAI Ca2+ Channels in Cancers and Therapeutic Interventions.
Abstract:
The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
18.
Lighting the way: recent developments and applications in molecular optogenetics.
Abstract:
Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
19.
Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.
Abstract:
[This corrects the article DOI: 10.1002/mco2.226.].
20.
Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light.
Abstract:
Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.
21.
Cardiac optogenetics: shining light on signaling pathways.
Abstract:
In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
22.
Visual quantification of prostaglandin E2 discharge from a single cell.
Abstract:
Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
23.
Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy.
-
Dou, Y
-
Chen, R
-
Liu, S
-
Lee, YT
-
Jing, J
-
Liu, X
-
Ke, Y
-
Wang, R
-
Zhou, Y
-
Huang, Y
Abstract:
The cGAS-STING signaling pathway has emerged as a promising target for immunotherapy development. Here, we introduce a light-sensitive optogenetic device for control of the cGAS/STING signaling to conditionally modulate innate immunity, called 'light-inducible SMOC-like repeats' (LiSmore). We demonstrate that photo-activated LiSmore boosts dendritic cell (DC) maturation and antigen presentation with high spatiotemporal precision. This non-invasive approach photo-sensitizes cytotoxic T lymphocytes to engage tumor antigens, leading to a sustained antitumor immune response. When combined with an immune checkpoint blocker (ICB), LiSmore improves antitumor efficacy in an immunosuppressive lung cancer model that is otherwise unresponsive to conventional ICB treatment. Additionally, LiSmore exhibits an abscopal effect by effectively suppressing tumor growth in a distal site in a bilateral mouse model of melanoma. Collectively, our findings establish the potential of targeted optogenetic activation of the STING signaling pathway for remote immunomodulation in mice.
24.
Selective induction of programmed cell death using synthetic biology tools.
Abstract:
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
25.
Optogenetic control of the integrated stress response reveals proportional encoding and the stress memory landscape.
Abstract:
The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation. Using light to control opto-PKR dynamics, we traced information flow through the transcriptome and for key downstream ISR effectors. Our analyses revealed a biphasic, proportional transcriptional response with two dynamic modes, transient and gradual, that correspond to adaptive and terminal outcomes. We then constructed an ordinary differential equation (ODE) model of the ISR, which demonstrated the dependence of future stress responses on past stress. Finally, we tested our model using high-throughput light-delivery to map the stress memory landscape. Our results demonstrate that cells encode information in stress levels, durations, and the timing between encounters. A record of this paper's transparent peer review process is included in the supplemental information.