Showing 1 - 25 of 186 results
1.
Light-induced expression of gRNA allows for optogenetic gene editing of T lymphocytes in vivo.
Abstract:
There is currently a lack of tools capable of perturbing genes in both a precise and a spatiotemporal fashion. The flexibility of CRISPR (clustered regularly interspaced short palindromic repeats), coupled with light's unparalleled spatiotemporal resolution deliverable from a controllable source, makes optogenetic CRISPR a well-suited solution for precise spatiotemporal gene perturbations. Here, we present a new optogenetic CRISPR tool (Blue Light-inducible Universal VPR-Improved Production of RGRs, BLU-VIPR) that diverges from prevailing split-Cas design strategies and instead focuses on optogenetic regulation of guide RNA (gRNA) production. We engineered BLU-VIPR around a new potent blue-light activated transcription factor (VPR-EL222) and ribozyme-flanked gRNA. The BLU-VIPR design is genetically encoded and ensures precise excision of multiple gRNAs from a single messenger RNA transcript. This simplified spatiotemporal gene perturbation and allowed for several types of optogenetic CRISPR, including indels, CRISPRa, and base editing. BLU-VIPR also worked in vivo with cells previously intractable to optogenetic gene editing, achieving optogenetic gene editing in T lymphocytes in vivo.
2.
Anti-Pdc1p Nanobody as a Genetically Encoded Inhibitor of Ethanol Production Enables Dual Transcriptional and Post-translational Controls of Yeast Fermentations.
Abstract:
Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase PDC1, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates PDC1 and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.
3.
Light-induced programmable solid-liquid phase transition of biomolecular condensates for improved biosynthesis.
Abstract:
Keeping condensates in liquid-like states throughout the biosynthesis process in microbial cell factories remains an ongoing challenge. Here, we present a light-controlled phase regulator, which maintains the liquid-like features of synthetic condensates on demand throughout the biosynthesis process upon light induction, as demonstrated by various live cell-imaging techniques. Specifically, the tobacco etch virus (TEV) protease controlled by light cleaves intrinsically disordered proteins (IDPs) to alter their valency and concentration for controlled phase transition and programmable fluidity of cellular condensates. As a proof of concept, we harness this capability to significantly improve the production of squalene and ursolic acid (UA) in engineered Saccharomyces cerevisiae. Our work provides a powerful approach to program the solid-liquid phase transition of biomolecular condensates for improved biosynthesis.
4.
HP1-enhanced chromatin compaction stabilizes a synthetic metabolic circuit in yeast.
-
González, L
-
García Echauri, SA
-
Jeronimo, C
-
Poitras, C
-
Gencel, M
-
Serohijos, A
-
Bloom, K
-
Robert, F
-
Avalos, JL
-
Michnick, SW
Abstract:
Chromatin compaction defines genome topology, evolution, and function. The Saccharomycotina subphylum, including the fermenting yeast Saccharomyces cerevisiae have a decompacted genome, possibly because they lost two genes mediating a specific histone lysine methylation and histone binding protein heterochromatin protein 1 (HP1). This decompaction may result in the higher-than-expected mutation and meiotic recombination rates observed in this species. To test this hypothesis, we retro-engineered S. cerevisiae to compact the genome by expressing the HP1 homologue of Schizosaccharomyces pombe SpSwi6 and H3K9 methyltransferase SpClr4. The resulting strain had significantly more compact chromatin and reduced rates of mutation and meiotic recombination. The increased genomic stability significantly prolongs the optogenetic control of an engineered strain designed to grow only in blue light. This result demonstrates the potential of our approach to enhance the stability of strains for metabolic engineering and other synthetic biology applications, which are prone to lose activities due to genetic instability.
5.
Protein design accelerates the development and application of optogenetic tools.
Abstract:
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
6.
A new flavor of synthetic yeast communities sees the light.
Abstract:
No organism is an island: organisms of varying taxonomic complexity, including genetic variants of a single species, can coexist in particular niches, cooperating for survival while simultaneously competing for environmental resources. In recent years, synthetic biology strategies have witnessed a surge of efforts focused on creating artificial microbial communities to tackle pressing questions about the complexity of natural systems and the interactions that underpin them. These engineered ecosystems depend on the number and nature of their members, allowing complex cell communication designs to recreate and create diverse interactions of interest. Due to its experimental simplicity, the budding yeast Saccharomyces cerevisiae has been harnessed to establish a mixture of varied cell populations with the potential to explore synthetic ecology, metabolic bioprocessing, biosensing, and pattern formation. Indeed, engineered yeast communities enable advanced molecule detection dynamics and logic operations. Here, we present a concise overview of the state-of-the-art, highlighting examples that exploit optogenetics to manipulate, through light stimulation, key yeast phenotypes at the community level, with unprecedented spatial and temporal regulation. Hence, we envision a bright future where the application of optogenetic approaches in synthetic communities (optoecology) illuminates the intricate dynamics of complex ecosystems and drives innovations in metabolic engineering strategies.
7.
Balancing doses of EL222 and light improves optogenetic induction of protein production in Komagataella phaffii.
Abstract:
Komagataella phaffii, also known as Pichia pastoris, is a powerful host for recombinant protein production, in part due to its exceptionally strong and tightly controlled PAOX1 promoter. Most K. phaffii bioprocesses for recombinant protein production rely on PAOX1 to achieve dynamic control in two-phase processes. Cells are first grown under conditions that repress PAOX1 (growth phase), followed by methanol-induced recombinant protein expression (production phase). In this study, we propose a methanol-free approach for dynamic metabolic control in K. phaffii using optogenetics, which can help enhance input tunability and flexibility in process optimization and control. The light-responsive transcription factor EL222 from Erythrobacter litoralis is used to regulate protein production from the PC120 promoter in K. phaffii with blue light. We used two system designs to explore the advantages and disadvantages of coupling or decoupling EL222 integration with that of the gene of interest. We investigate the relationship between EL222 gene copy number and light dosage to improve production efficiency for intracellular and secreted proteins. Experiments in lab-scale bioreactors demonstrate the feasibility of the outlined optogenetic systems as potential alternatives to conventional methanol-inducible bioprocesses using K. phaffii.
8.
Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.
Abstract:
As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers—chemical, light, temperature, and pH—this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
9.
Illuminating the future of food microbial control: From optical tools to Optogenetic tools.
Abstract:
Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
10.
Optogenetic control of Corynebacterium glutamicum gene expression.
Abstract:
Corynebacterium glutamicum is a key industrial workhorse for producing amino acids and high-value chemicals. Balancing metabolic flow between cell growth and product synthesis is crucial for enhancing production efficiency. Developing dynamic, broadly applicable, and minimally toxic gene regulation tools for C. glutamicum remains challenging, as optogenetic tools ideal for dynamic regulatory strategies have not yet been developed. This study introduces an advanced light-controlled gene expression system using light-controlled RNA-binding proteins (RBP), a first for Corynebacterium glutamicum. We established a gene expression regulation system, 'LightOnC.glu', utilizing the light-controlled RBP to construct light-controlled transcription factors in C. glutamicum. Simultaneously, we developed a high-performance light-controlled gene interference system using CRISPR/Cpf1 tools. The metabolic flow in the synthesis network was designed to enable the production of chitin oligosaccharides (CHOSs) and chondroitin sulphate oligosaccharides A (CSA) for the first time in C. glutamicum. Additionally, a light-controlled bioreactor was constructed, achieving a CHOSs production concentration of 6.2 g/L, the highest titer recorded for CHOSs biosynthesis to date. Herein, we have established a programmable light-responsive genetic circuit in C. glutamicum, advancing the theory of dynamic regulation based on light signaling. This breakthrough has potential applications in optimizing metabolic modules in other chassis cells and synthesizing other compounds.
11.
Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells.
Abstract:
Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches. The knowhow of ideal light exposure to enable the optimum use of related approaches is missing so far. Consequently, the current study set out to find optimum conditions for IgG1 producing Chinese hamster ovary (CHO) cells which were exposed to blue LED light. Growth characteristics, cell-specific productivity using enzyme-linked immunosorbent assay, as well as cell cycle distribution using flow cytometry were analyzed. Whereas too harsh light exposure causes detrimental growth effects that could be compensated with antioxidants, a surprising boost of cell-specific productivity by 57% occurred at optimum high light doses. The increase coincided with an increased number of cells in the G1 phase of the cell cycle after 72 h of illumination. The results present a promising new approach to boost biopharmaceutical productivity of mammalian cells simply by proper light exposure without any further optogenetic engineering. KEY POINTS: • Blue LED light hinders growth in CHO DP-12 cells • Antioxidants protect to a certain degree from blue light effects • Illumination with blue LED light raises cell-specific productivity.
12.
Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures.
-
Beyer, HM
-
Kumar, S
-
Nieke, M
-
Diehl, CMC
-
Tang, K
-
Shumka, S
-
Koh, CS
-
Fleck, C
-
Davies, JA
-
Khammash, M
-
Zurbriggen, MD
Abstract:
Recent advances in tissue engineering have been remarkable, yet the precise control of cellular behavior in 2D and 3D cultures remains challenging. One approach to address this limitation is to genomically engineer optogenetic control of cellular processes into tissues using gene switches that can operate with only a few genomic copies. Here, we implement blue and red light-responsive gene switches to engineer genomically stable two- and three-dimensional mammalian tissue models. Notably, we achieve precise control of cell death and morphogen-directed patterning in 2D and 3D tissues by optogenetically regulating cell necroptosis and synthetic WNT3A signaling at high spatiotemporal resolution. This is accomplished using custom-built patterned LED systems, including digital mirrors and photomasks, as well as laser techniques. These advancements demonstrate the capability of precise spatiotemporal modulation in tissue engineering and open up new avenues for developing programmable 3D tissue and organ models, with significant implications for biomedical research and therapeutic applications.
13.
Engineering of LOV-domains for their use as protein tags.
Abstract:
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
14.
Light-Induced Nanobody-Mediated Targeted Protein Degradation for Metabolic Flux Control.
Abstract:
In metabolic engineering, increasing chemical production usually involves manipulating the expression levels of key enzymes. However, limited synthetic tools exist for modulating enzyme activity beyond the transcription level. Inspired by natural post-translational mechanisms, we present targeted enzyme degradation mediated by optically controlled nanobodies. We applied this method to a branched biosynthetic pathway, deoxyviolacein, and observed enhanced product specificity and yield. We then extend the biosynthesis pathway to violacein and show how simultaneous degradation of two target enzymes can further shift production profiles. Through the redirection of metabolic flux, we demonstrate how targeted enzyme degradation can be used to minimize unwanted intermediates and boost the formation of desired products.
15.
Potent photoswitch for expression of biotherapeutics in mammalian cells by light.
Abstract:
Precise temporal and spatial control of gene expression is of great benefit for the study of specific cellular circuits and activities. Compared to chemical inducers, light-dependent control of gene expression by optogenetics achieves a higher spatial and temporal resolution. This could also prove decisive beyond basic research for manufacturing difficult-to-express proteins in pharmaceutical bioproduction. However, current optogenetic gene-expression systems limit this application in mammalian cells as expression levels and fold induction upon light stimulation are not sufficient. To overcome this limitation, we designed a photoswitch by fusing the blue light-activated light-oxygen-voltage receptor EL222 from Erythrobacter litoralis to the three tandem transcriptional activator domains VP64, p65, and Rta. The resultant photoswitch, dubbed DEL-VPR, allows an up to 400-fold induction of target gene expression by blue light, achieving expression levels that surpass those for strong constitutive promoters. Here, we utilized DEL-VPR to enable light-induced expression of complex monoclonal and bispecific antibodies with reduced byproduct expression, increasing the yield of functional protein complexes. Our approach offers temporally controlled yet strong gene expression and applies to both academic and industrial settings.
16.
Optogenetic Tools for Regulating RNA Metabolism and Functions.
Abstract:
RNA molecules play a vital role in linking genetic information with various cellular processes. In recent years, a variety of optogenetic tools have been engineered for regulating cellular RNA metabolism and functions. These highly desirable tools can offer non-intrusive control with spatial precision, remote operation, and biocompatibility. Here, we would like to review these currently available approaches that can regulate RNAs with light: from non-genetically encodable chemically modified oligonucleotides to genetically encoded RNA aptamers that recognize photosensitive small-molecule or protein ligands. Some key applications of these optogenetic tools will also be highlighted to illustrate how they have been used for regulating all aspects of the RNA life cycle: from RNA synthesis, maturation, modification, and translation to their degradation, localization, and phase separation control. Some current challenges and potential practical utilizations of these RNA optogenetic tools will also be discussed.
17.
Rapid and reversible regulation of cell cycle progression in budding yeast using optogenetics.
Abstract:
The regulatory complexity of the eukaryotic cell cycle poses technical challenges in experiment design and data interpretation, leaving gaps in our understanding of how cells coordinate cell cycle-related processes. Traditional methods, such as knockouts and deletions are often ineffective to compensatory interactions in the cell cycle control network, while chemical agents that cause cell cycle arrest can have undesired pleiotropic effects. Synthetic inducible systems targeting specific cell cycle regulators offer potential solutions but are limited by the need for external inducers, which make fast reversibility technically challenging. To address these issues, we developed an optogenetic tool (OPTO-Cln2) that enables light-controlled and reversible regulation of G1 progression in budding yeast. Through extensive validation and benchmarking via time-lapse microscopy, we verify that OPTO-Cln2-carrying strains can rapidly toggle between normal and altered G1 progression. By integrating OPTO-Cln2 with a readout of nutrient-sensing pathways (TORC1 and PKA), we show that the oscillatory activity of these pathways is tightly coordinated with G1 progression. Finally, we demonstrate that the rapid reversibility of OPTO-Cln2 facilitates multiple cycles of synchronous arrest and release of liquid cell cultures. Our work provides a powerful new approach for studying cell cycle dynamics and the coordination of growth- with division-related processes.
18.
Integrating bioprinting and optogenetic technologies for precision plant tissue engineering.
Abstract:
Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
19.
Programming mammalian cell behaviors by physical cues.
Abstract:
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
20.
Bacteria-based cascade in situ near-infrared nano-optogenetically induced photothermal tumor therapy.
-
Hu, X
-
Chen, J
-
Qiu, Y
-
Chen, S
-
Liu, Y
-
Yu, X
-
Liu, Y
-
Yang, X
-
Zhang, Y
-
Zhu, Y
Abstract:
Rationale: Optogenetically engineered facultative anaerobic bacteria exhibit a favorable tendency to colonize at solid tumor sites and spatiotemporally-programmable therapeutics release abilities, attracting extensive attention in precision tumor therapy. However, their therapeutic efficacy is moderate. Conventional photothermal agents with high tumor ablation capabilities exhibit low tumor targeting efficiency, resulting in significant off-target side effects. The combination of optogenetics and photothermal therapy may offer both tumor-targeting and excellent tumor-elimination capabilities, which unfortunately has rarely been investigated. Herein, we construct a bacteria-based cascade near-infrared optogentical-photothermal system (EcNαHL-UCNPs) for enhanced tumor therapy. Methods: EcNαHL-UCNPs consists of an optogenetically engineered Escherichia coli Nissle 1917 (EcN) conjugated with lanthanide-doped upconversion nanoparticles (UCNPs), which are capable of locally secreting α-hemolysin (αHL), a pore-forming protein, in responsive to NIR irradiation. Anti-tumor effects of EcNαHL-UCNPs were determined in both H22 and 4T1 tumors. Results: The αHL not only eliminates tumor cells, but more importantly disrupts endothelium to form thrombosis as an in situ photothermal agent in tumors. The in situ formed thrombosis significantly potentiates the photothermic ablation of H22 tumors upon subsequent NIR light irradiation. Besides, αHL secreted by EcNαHL-UCNPs under NIR light irradiation not only inhibits 4T1 tumor growth, but also suppresses metastasis of 4T1 tumor via inducing the immune response. Conclusion: Our studies highlight bacteria-based cascade optogenetical-photothermal system for precise and effective tumor therapy.
21.
Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae.
Abstract:
Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionality they can deliver and biological questions that can be probed.
22.
Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems.
-
Gillespie, W
-
Zhang, Y
-
Ruiz, OE
-
Cerda III, J
-
Ortiz-Guzman, J
-
Turner, WD
-
Largoza, G
-
Sherman, M
-
Mosser, LE
-
Fujimoto, E
-
Chien, CB
-
Kwan, KM
-
Arenkiel, BR
-
Devine, WP
-
Wythe, JD
Abstract:
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 “Entry” vector components, all into a fourth, standard high copy “Destination” plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
23.
Nano-optogenetics for Disease Therapies.
Abstract:
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
24.
Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals.
Abstract:
At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.
25.
Blue light-mediated gene expression as a promising strategy to reduce antibiotic resistance in Escherichia coli.
Abstract:
The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of β-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.