Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"Magnets"
Showing 1 - 25 of 174 results
1.

Technological advances in visualizing and rewiring microtubules during plant development.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
J Exp Bot, 16 Dec 2025 DOI: 10.1093/jxb/eraf284 Link to full text
Abstract: Microtubules are crucial regulators of plant development and are organized by a suite of microtubule-associated proteins (MAPs) that can rapidly remodel the array in response to various cues. This complexity has inspired countless studies into microtubule function from the subcellular to tissue scale, revealing an ever-increasing number of microtubule-dependent processes. Developing a comprehensive understanding of how local microtubule configuration, dynamicity, and remodeling drive developmental progression requires new approaches to capture and alter microtubule behavior. In this review, we will introduce the technological advancements we believe are poised to transform the study of microtubules in plant cells. In particular, we focus on (1) advanced imaging and analysis methods to quantify microtubule organization and behavior, and (2) novel tools to target specific microtubule populations in vivo. By showcasing innovative methodologies developed in non-plant systems, we hope to motivate their increased adoption and raise awareness of possible means of adapting them for studying microtubules in plants.
2.

Optogenetic control of biomolecular organization reveals distinct roles of phase separation in RTK signaling.

blue CRY2/CRY2 iLID Magnets TULIP A549 HEK293T HeLa U-2 OS Signaling cascade control Organelle manipulation
Cell Chem Biol, 1 Dec 2025 DOI: 10.1016/j.chembiol.2025.11.001 Link to full text
Abstract: Multimerization and phase separation represent two paradigms for organizing receptor tyrosine kinases (RTKs). However, their functional distinctions from the perspective of biomolecular organization remain unclear. Here, we present CORdensate, a light-controllable condensation system combining two synergistic photoactuators: oligomeric Cry2 and heterodimeric LOVpep/ePDZ. Engineering single-chain photoswitches, we achieve four biomolecular organization patterns ranging from monomerization to phase separation. CORdensate exhibits constant assembly and disassembly kinetics. Applying CORdensate to mimic pathogenic RTK granules establishes the role of phase separation in activating ALK and RET. Moreover, assembling ALK and RET through varying organization patterns, we highlight the superior organizational ability of phase separation over multimerization. Additionally, CORdensate-based RTK granules suggest that phase separation broadly and robustly activates RTKs. This study introduces a optogenetic tool for investigating biomolecular condensation.
3.

Optogenetic tools for optimizing key signalling nodes in synthetic biology.

blue green near-infrared red BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Biotechnol Adv, 27 Nov 2025 DOI: 10.1016/j.biotechadv.2025.108770 Link to full text
Abstract: The modification of key enzymes for chemical production plays a crucial role in enhancing the yield of targeted products. However, manipulating key nodes in specific signalling pathways remains constrained by traditional gene overexpression or knockout strategies. Discovering and designing optogenetic tools enable us to regulate enzymatic activity or gene expression at key nodes in a spatiotemporal manner, rather than relying solely on chemical induction throughout production processes. In this review, we discuss the recent applications of optogenetic tools in the regulation of microbial metabolites, plant sciences and disease therapies. We categorize optogenetic tools into five classes based on their distinct applications. First, light-induced gene expression schedules can balance the trade-off between chemical production and cell growth phases. Second, light-triggered liquid-liquid phase separation (LLPS) modules provide opportunities to co-localize and condense key enzymes for enhancing catalytic efficiency. Third, light-induced subcellular localized photoreceptors enable the relocation of protein of interest across various subcellular compartments, allowing for the investigation of their dynamic regulatory processes. Fourth, light-regulated enzymes can dynamically regulate production of cyclic nucleotides or investigate endogenous components similar with conditional depletion or recovery function of protein of interest. Fifth, light-gated ion channels and pumps can be utilized to investigate dynamic ion signalling cascades in both animals and plants, or to boost ATP accumulation for enhancing biomass or bioproduct yields in microorganisms. Overall, this review aims to provide a comprehensive overview of optogenetic strategies that have the potential to advance both basic research and bioindustry within the field of synthetic biology.
4.

Mechanisms and applications of epigenome editing in plants: current status, challenges and future perspectives.

blue Cryptochromes LOV domains Review
Funct Integr Genomics, 17 Nov 2025 DOI: 10.1007/s10142-025-01762-3 Link to full text
Abstract: Epigenome editing has become a leading-edge technology of programmable, heritable and reversible control of gene expression in plants without changing the DNA sequence. CRISPR/dCas9 systems along with transcription activator-like effectors (TALEs) and zinc finger systems have made it possible to manipulate DNA methylation, histone modifications, and RNA epigenetic marks in a precise and locus-specific fashion. These tools have been used on major regulatory genes of flowering time, stress adjustment, and yield maximization in model and crop plants. This review synthesizes the current status of plant epigenome editing advances and highlights mechanistic innovations including SunTag, CRISPRoff/on and RNA m6A editing. It also emphasizes new paradigm shifts in chromatin reprogramming, including transcription-resistive chromatin states, locus-specific H3K27me3 demethylation, and nanobody-mediated chromatin targeting. Furthermore, it considers the consequences of these shifts in the context of trait stability and epigenetic inheritance. Moreover, the relative evaluation of dCas9-, TALE-, and ZFP-based platforms indicated that there are still enduring problems in the performance of delivery, off-target effects, and transgenerational stability. The review concludes with a conceptual framework connecting epigenome editing to climate-smart crop improvement and outlines future research priorities focused on combinatorial multi-omics integration and the development of environmentally responsive editing platforms.
5.

Capitalizing on mechanistic insights to power design of future-ready intracellular optogenetics tools.

blue cyan green near-infrared red BLUF domains CarH Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 17 Nov 2025 DOI: 10.1016/j.biotechadv.2025.108761 Link to full text
Abstract: Intracellular optogenetics represents a rapidly advancing biotechnology that enables precise, reversible control of protein activity, signaling dynamics, and cellular behaviours using genetically encoded, light-responsive systems. Originally pioneered in neuroscience through channelrhodopsins to manipulate neuronal excitability, the field has since expanded into diverse intracellular applications with broad implications for medicine, agriculture, and biomanufacturing. Key to these advances are photoreceptors such as cryptochrome 2 (CRY2), light-oxygen-voltage (LOV) domains, and phytochromes, which undergo conformational changes upon illumination to trigger conditional protein-protein interactions, localization shifts, or phase transitions. Recent engineering breakthroughs-including the creation of red-light responsive systems such as MagRed that exploit endogenous biliverdin-have enhanced tissue penetration, minimized phototoxicity, and expanded applicability to complex biological systems. This review provides an overarching synthesis of the molecular principles underlying intracellular optogenetic actuators, including the photophysical basis of light-induced conformational changes, oligomerization, and signaling control. We highlight strategies that employ domain fusions, rational mutagenesis, and synthetic circuits to extend their utility across biological and industrial contexts. We also critically assess current limitations, such as chromophore dependence, light delivery challenges, and safety considerations, so as to frame realistic paths towards translation. Looking ahead, future opportunities include multi-colour and multiplexed systems, integration with high-throughput omics and artificial intelligence, and development of non-invasive modalities suited for in vivo and industrial applications. Intracellular optogenetics is thus emerging as a versatile platform technology, with the potential to reshape how we interrogate biology and engineer cells for therapeutic, agricultural, and environmental solutions.
6.

AlphaFold3-guided optimization of a photoactivatable endonuclease for top-down genome engineering.

blue Magnets VVD in silico S. cerevisiae Nucleic acid editing
J Biol Chem, 24 Sep 2025 DOI: 10.1016/j.jbc.2025.110762 Link to full text
Abstract: Recent advances in protein structure prediction by artificial intelligence have enabled the rational design of engineered enzymes with enhanced activity and precise regulatory features. Here, we report the AlphaFold3-guided enhancement of MagMboI, a photoactivatable restriction enzyme designed for light-controlled top-down genome engineering. MagMboI is derived from the type II restriction enzyme MboI and functions through a split-protein strategy in which its N- and C-terminal fragments are fused to light-inducible dimerization modules. Upon exposure to blue light, these domains heterodimerize, restoring nuclease activity in a controlled manner. Using AlphaFold3, we modeled the structure of the MagMboI-DNA complex and gained structural insights into the interaction between MagMboI and its target DNA recognition sequence (5'-GATC-3') required for Mg2+-dependent DNA cleavage. Comparing neighboring split-site variants, we identified an alternative split that increases the MagMboI-DNA interface area and enhances complex stability relative to the original construct. This redesigned variant (designated MagMboI-plus) preserves α-helical integrity while strengthening protein-DNA contacts. Although MagMboI-plus, when introduced in Saccharomyces cerevisiae cells, exhibited slightly increased DNA-cleavage activity in vivo upon blue light activation, it was found to induce more pronounced genomic rearrangements compared to the original MagMboI construct. These findings demonstrate that AlphaFold3-based prediction can accelerate functional improvements in engineered enzymes, providing a strategy for developing light-controlled genome engineering tools.
7.

Optogenetic enzymes: A deep dive into design and impact.

blue cyan near-infrared red BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Struct Biol, 5 Aug 2025 DOI: 10.1016/j.sbi.2025.103126 Link to full text
Abstract: Optogenetically regulated enzymes offer unprecedented spatiotemporal control over protein activity, intermolecular interactions, and intracellular signaling. Many design strategies have been developed for their fabrication based on the principles of intrinsic allostery, oligomerization or 'split' status, intracellular compartmentalization, and steric hindrance. In addition to employing photosensory domains as part of the traditional optogenetic toolset, the specificity of effector domains has also been leveraged for endogenous applications. Here, we discuss the dynamics of light activation while providing a bird's eye view of the crafting approaches, targets, and impact of optogenetic enzymes in orchestrating cellular functions, as well as the bottlenecks and an outlook into the future.
8.

De novo designed protein guiding targeted protein degradation.

blue EL222 Magnets E. coli Transgene expression
Nat Commun, 17 Jul 2025 DOI: 10.1038/s41467-025-62050-z Link to full text
Abstract: Targeted protein degradation is a powerful tool for biological research, cell therapy, and synthetic biology. However, conventional methods often depend on pre-fused degrons or chemical degraders, limiting their wider applications. Here we develop a guided protein labeling and degradation system (GPlad) in Escherichia coli, using de novo designed guide proteins and arginine kinase (McsB) for precise degradation of various proteins, including fluorescent proteins, metabolic enzymes, and human proteins. We expand GPlad into versatile tools such as antiGPlad, OptoGPlad, and GPTAC, enabling reversible inhibition, optogenetic regulation, and biological chimerization. The combination of GPlad and antiGPlad allows for programmable circuit construction, including ON/OFF switches, signal amplifiers, and oscillators. OptoGPlad-mediated degradation of MutH accelerates E. coli evolution under protocatechuic acid stress, reducing the required generations from 220 to 100. GPTAC-mediated degradation of AroE enhanced the titer of 3-dehydroshikimic acid to 92.6 g/L, a 23.8% improvement over the conventional CRISPR interference method. We provide a tunable, plug-and-play strategy for straightforward protein degradation without the need for pre-fusion, with substantial implications for synthetic biology and metabolic engineering.
9.

Opto-CRISPR: new prospects for gene editing and regulation.

blue cyan green red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 17 Jul 2025 DOI: 10.1016/j.tibtech.2025.06.018 Link to full text
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR) technology represents a landmark advance in the field of gene editing. However, conventional CRISPR/Cas systems are limited by inadequate temporal and spatial control. In recent years, the development of optically controlled CRISPR (Opto-CRISPR) technology has offered a novel solution to this issue. As a combination of optogenetics and the CRISPR technology, the Opto-CRISPR technology enables dynamic space-time-specific gene editing and regulation in cells and organisms. In this review, we concisely introduce the basic principles of Opto-CRISPR, summarize its operational mechanisms, and discuss its applications and recent advances across various research fields. In addition, this review analyzes the limitations of Opto-CRISPR, aiming to provide a reference for the development of this emerging field.
10.

Shaping viral immunotherapy towards cancer-targeted immunological cell death.

blue red Cryptochromes LOV domains Phytochromes Review
Front Oncol, 8 Jul 2025 DOI: 10.3389/fonc.2025.1540397 Link to full text
Abstract: Oncolytic viruses (OVs) have the ability to efficiently enter, replicate within, and destroy cancer cells. This capacity to selectively target cancer cells while inducing long-term anti-tumor immune responses, makes OVs a promising tool for next-generation cancer therapy. Immunogenic cell death (ICD) induced by OVs initiates the cancer-immunity cycle (CIC) and plays a critical role in activating and reshaping anti-cancer immunity. Genetic engineering, including arming OVs with cancer cell-specific binders and immunostimulatory molecules, further enhances immune responses at various stages of the CIC, improving the specificity and safety of virotherapy.The aim of this study is to update current knowledge in immunotherapy using OVs and to highlight the remarkable plasticity of viruses in shaping the tumor immune microenvironment, which may facilitate anti-cancer treatment through various approaches.
11.

Programmable genome engineering and gene modifications for plant biodesign.

blue red Cryptochromes LOV domains Phytochromes Review
Plant Commun, 24 Jun 2025 DOI: 10.1016/j.xplc.2025.101427 Link to full text
Abstract: Plant science has entered a transformative era as genome editing enables precise DNA modifications to address global challenges such as climate adaptation and food security. These modifications are primarily driven by the integration of three modular components-DNA-targeting modules, effector modules, and control modules-that can be selectively activated or suppressed. The field has evolved from protein-based systems (e.g., zinc finger nucleases and transcription activator-like effector nucleases) to RNA-guided systems (e.g., CRISPR-Cas) that can control both genetic and epigenetic states. Modular pairing of DNA-targeting and effector domains, with or without inducible control, enables precise transcriptional regulation and chromatin remodeling. The present review examines these three modules and highlights strategies for their optimization. It also outlines innovative tools, such as optogenetic and receptor-integrated systems, that enable spatiotemporal control over genome editor expression. These modular approaches bypass traditional limitations and allow scientists to create plants with desirable traits, decipher complex gene networks, and promote sustainable agriculture.
12.

Nanobody-Based Light-Controllable Systems for Investigating Biology.

blue near-infrared red LOV domains Phytochromes Review
Chembiochem, 9 Jun 2025 DOI: 10.1002/cbic.202500311 Link to full text
Abstract: Nanobodies, the camelid-derived single-chain variable domain of heavy-chain-only antibodies, are compact in size and exhibit high binding affinity and specificity to their binding partners. As innovative antibody modalities, nanobodies have garnered significant attention in medicine and biological research. To achieve higher spatiotemporal precision, nanobody-based light-controlled systems-such as photobody, optobody, photoactivatable nanobody conjugate inducers of dimerization, and others-have been developed. These systems enable optical control of biological processes while leveraging the advantages of nanobodies as a binding moiety. This concept, summarizes nanobody-based photoregulated systems for investigating biology through light, highlights their advantages and potential limitations, and discusses future directions in this emerging research area.
13.

Single-cell characterization of bacterial optogenetic Cre recombinases.

blue red Magnets PhyA/FHY1 VVD E. coli Nucleic acid editing
bioRxiv, 7 Jun 2025 DOI: 10.1101/2025.06.06.658346 Link to full text
Abstract: Microbial optogenetic tools can regulate gene expression with high spatial and temporal precision, offering excellent potential for single-cell resolution studies. However, bacterial optogenetic systems have primarily been deployed for population-level experiments. It is not always clear how these tools perform in single cells, where stochastic effects can be substantial. In this study, we focus on optogenetic Cre recombinase and systematically compare the performance of three variants (OptoCre-REDMAP, OptoCre-Vvd, and PA-Cre) for their population-level and single-cell activity. We quantify recombination efficiency, expression variability, and activation dynamics using reporters which produce changes in fluorescence or antibiotic resistance following light-induced Cre activity. Our results indicate that optogenetic recombinase performance can be reporter-dependent, suggesting that this is an important consideration in system design. Further, our single-cell analysis reveals highly heterogeneous activity across cells. Although general trends match expectations for mean levels of light-dependent recombination, we found substantial variation in this behavior across individual cells. In addition, our results show that the timing of recombinase activity is highly variable from cell to cell. These findings suggest critical criteria for selecting appropriate optogenetic recombinase systems and indicate areas for optimization to improve the single-cell capabilities of bacterial optogenetic tools.
14.

Digitizing the Blue Light-Activated T7 RNA Polymerase System with a tet-Controlled Riboregulator.

blue Magnets E. coli Transgene expression
ACS Synth Biol, 19 May 2025 DOI: 10.1021/acssynbio.5c00142 Link to full text
Abstract: Optogenetic systems offer precise control over gene expression, but leaky activity in the dark limits their dynamic range and, consequently, their applicability. Here, we enhanced an optogenetic system based on a split T7 RNA polymerase fused to blue-light-inducible Magnets by incorporating a tet-controlled riboregulatory module. This module exploits the photosensitivity of anhydrotetracycline and the designability of synthetic small RNAs to digitize light-controlled gene expression, implementing a repressive action over the translation of a polymerase fragment gene that is relieved with blue light. Our engineered system exhibited 13-fold improvement in dynamic range upon blue light exposure, which even raised to 23-fold improvement when using cells preadapted to chemical induction. As a functional demonstration, we implemented light-controlled antibiotic resistance in bacteria. Such integration of regulatory layers represents a suitable strategy for engineering better circuits for light-based biotechnological applications.
15.

Multiplexing light-inducible recombinases to control cell fate, Boolean logic, and cell patterning in mammalian cells.

blue red Magnets MagRed nanoReD PhyA/FHY1 C3H/10T1/2 HEK293FT Nucleic acid editing Multichromatic
Sci Adv, 9 May 2025 DOI: 10.1126/sciadv.adt1971 Link to full text
Abstract: Light-inducible regulatory proteins are powerful tools to interrogate fundamental mechanisms driving cellular behavior. In particular, genetically encoded photosensory domains fused to split proteins can tightly modulate protein activity and gene expression. While light-inducible split protein systems have performed well individually, few multichromatic and orthogonal gene regulation systems exist in mammalian cells. The design space for multichromatic circuits is limited by the small number of orthogonally addressable optogenetic switches and the types of effectors that can be actuated by them. We developed a library of red light-inducible recombinases and directed patterned myogenesis in a mesenchymal fibroblast-like cell line. To address the limited number of light-inducible domains (LIDs) responding to unique excitation spectra, we multiplexed light-inducible recombinases with our "Boolean logic and arithmetic through DNA excision" (BLADE) platform. Multiplexed optogenetic tools will be transformative for understanding the role of multiple interacting genes and their spatial context in endogenous signaling networks.
16.

Engineered depalmitoylases enable selective manipulation of protein localization and function.

blue Magnets HEK293 Control of intracellular / vesicular transport
Nat Commun, 13 Apr 2025 DOI: 10.1038/s41467-025-58908-x Link to full text
Abstract: S-Palmitoylation is a reversible post-translational modification that tunes the localization, stability, and function of an impressive array of proteins including ion channels, G-proteins, and synaptic proteins. Indeed, altered protein palmitoylation is linked to various human diseases including cancers, neurodevelopmental and neurodegenerative diseases. As such, strategies to selectively manipulate protein palmitoylation with enhanced temporal and subcellular precision are sought after to both delineate physiological functions and as potential therapeutics. Here, we develop chemogenetically and optogenetically inducible engineered depalmitoylases to manipulate the palmitoylation status of target proteins. We demonstrate that this strategy is programmable allowing selective depalmitoylation in specific organelles, triggered by cell-signaling events, and of individual protein complexes. Application of this methodology revealed bidirectional tuning of neuronal excitability by distinct depalmitoylases. Overall, this strategy represents a versatile and powerful method for manipulating protein palmitoylation in live cells, providing insights into their regulation in distinct physiological contexts.
17.

Application of the Magnet-Cre optogenetic system in the chicken model.

blue Magnets chicken in vivo Transgene expression Developmental processes
Dev Biol, 3 Apr 2025 DOI: 10.1016/j.ydbio.2025.04.003 Link to full text
Abstract: Chickens serve as an excellent model organism for developmental biology, offering unique opportunities for precise spatiotemporal access to embryos within eggs. Optogenes are light-activated proteins that regulate gene expression, offering a non-invasive method to activate genes at specific locations and developmental stages, advancing developmental biology research. This study employed the Magnet-Cre optogenetic system to control gene expression in developing chicken embryos. Magnet-Cre consists of two light-sensitive protein domains that dimerize upon light activation, each attached to an inactive half of the Cre recombinase enzyme, which becomes active upon dimerization. We developed an all-in-one plasmid containing a green fluorescent protein marker, the Magnet-Cre system, and a light-activated red fluorescent protein gene. This plasmid was electroporated into the neural tube of Hamburger and Hamilton (H&H) stage 14 chicken embryos. Embryo samples were cleared using the CUBIC protocol and imaged with a light sheet microscope to analyze optogenetic activity via red-fluorescent cells. We established a pipeline for Magnet-Cre activation in chicken embryos, demonstrating that a single 3-min exposure to blue light following incubation at 28 °C was sufficient to trigger gene activity within the neural tube, with increased activity upon additional light exposure. Finally, we showed a spatiotemporal control of gene activity using a localized laser light induction. This research lays the groundwork for further advancements in avian developmental biology and poultry research, enabling spatiotemporal control of genes in both embryos and transgenic chickens.
18.

Recent Developments in the Optical Control of Adrenergic Signaling.

blue red violet Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Med Res Rev, 3 Apr 2025 DOI: 10.1002/med.22110 Link to full text
Abstract: Adrenoceptors (ARs) play a vital role in various physiological processes and are key therapeutic targets. The advent of optical control techniques, including optogenetics and photopharmacology, offers the potential to modulate AR signaling with precise temporal and spatial resolution. In this review, we summarize the latest advancements in the optical control of AR signaling, encompassing optogenetics, photocaged compounds, and photoswitchable compounds. We also discuss the limitations of current tools and provide an outlook on the next generation of optogenetic and photopharmacological tools. These emerging optical technologies not only enhance our understanding of AR signaling but also pave the way for potential therapeutic developments.
19.

A subcellular map of translational machinery composition and regulation at the single-molecule level.

blue Magnets C3H/10T1/2 mESCs Organelle manipulation
Science, 7 Mar 2025 DOI: 10.1126/science.adn2623 Link to full text
Abstract: Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
20.

Protein design accelerates the development and application of optogenetic tools.

blue cyan green near-infrared red UV BlrP1b Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains PAC (BlaC)TtCBD Phytochromes UV receptors Review
Comput Struct Biotechnol J, 21 Feb 2025 DOI: 10.1016/j.csbj.2025.02.014 Link to full text
Abstract: Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
21.

Engineering organoids as cerebral disease models.

blue Cryptochromes LOV domains Review
Curr Opin Biotechnol, 14 Jan 2025 DOI: 10.1016/j.copbio.2024.103253 Link to full text
Abstract: Cerebral organoids pioneered in replicating complex brain tissue architectures in vitro, offering a vast potential for human disease modeling. They enable the in vitro study of human physiological and pathophysiological mechanisms of various neurological diseases and disorders. The trajectory of technological advancements in brain organoid generation and engineering over the past decade indicates that the technology might, in the future, mature into indispensable solutions at the horizon of personalized and regenerative medicine. In this review, we highlight recent advances in the engineering of brain organoids as disease models and discuss some of the challenges and opportunities for future research in this rapidly evolving field.
22.

Synthetic Lipid Biology.

blue Cryptochromes LOV domains Review
Chem Rev, 13 Jan 2025 DOI: 10.1021/acs.chemrev.4c00761 Link to full text
Abstract: Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell’s hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as “synthetic lipid biology”. Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid–protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
23.

Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Semin Cell Dev Biol, 26 Dec 2024 DOI: 10.1016/j.semcdb.2024.12.004 Link to full text
Abstract: Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
24.

Recent advances in spatiotemporal control of the CRISPR/Cas9 system.

blue cyan Cryptochromes Fluorescent proteins LOV domains Review
Colloids Surf B Biointerfaces, 24 Dec 2024 DOI: 10.1016/j.colsurfb.2024.114474 Link to full text
Abstract: The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.
25.

Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Synth Syst Biotechnol, 20 Dec 2024 DOI: 10.1016/j.synbio.2024.12.005 Link to full text
Abstract: As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers—chemical, light, temperature, and pH—this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
Submit a new publication to our database