Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
Not Review Not Background

Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.

blue green red Am1 c0023g2/BAm green Am1 c0023g2/BAm red AsLOV2 TULIP CHO-K1 HEK293T in vitro S. cerevisiae Transgene expression Multichromatic
Nat Methods, 23 Feb 2023 DOI: 10.1038/s41592-023-01764-8 Link to full text
Abstract: Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.

Green, orange, red, and far-red optogenetic tools derived from cyanobacteriochromes.

green red Am1 c0023g2/BAm green Am1 c0023g2/BAm red in vitro S. cerevisiae
bioRxiv, 14 Sep 2019 DOI: 10.1101/769422 Link to full text
Abstract: Existing optogenetic tools for controlling protein-protein interactions are available in a limited number of wavelengths thereby limiting opportunities for multiplexing. The cyanobacteriochrome (CBCR) family of photoreceptors responds to an extraordinary range of colors, but light-dependent binding partners for CBCR domains are not currently known. We used a phage-display based approach to develop small (~50-residue) monomeric binders selective for the green absorbing state (Pg), or for the red absorbing state (Pr) of the CBCR Am1_c0023g2 with a phycocyanobilin chromophore and also for the far-red absorbing state (Pfr) of Am1_c0023g2 with a biliverdin chromophore. These bind in a 1:1 mole ratio with KDs for the target state from 0.2 to 2 μM and selectivities from 10 to 500-fold. We demonstrate green, orange, red, and far-red light-dependent control of protein-protein interactions in vitro and also in vivo where these multicolor optogenetic tools are used to control transcription in yeast.
Submit a new publication to our database