Showing 1 - 25 of 63 results
1.
Optogenetics in pancreatic islets: Actuators and effects.
Abstract:
The Islets of Langerhans reside within the endocrine pancreas as highly vascularised micro-organs that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include calcium (Ca2+) waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Very recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbing islet function with near physiological spatio-temporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus (DM).
2.
Optogenetic therapeutic strategies for diabetes mellitus.
Abstract:
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
3.
Photoresponsive Hydrogels for Tissue Engineering.
Abstract:
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
4.
Nano-optogenetics for Disease Therapies.
Abstract:
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
5.
Tuning of B12 photochemistry in the CarH photoreceptor to avoid radical photoproduct
Abstract:
Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the lightactivated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
6.
Selective induction of programmed cell death using synthetic biology tools.
Abstract:
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
7.
The clinical potential of optogenetic interrogation of pathogenesis.
Abstract:
Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye.
8.
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.
Abstract:
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
9.
Shedding light on current trends in molecular optogenetics.
Abstract:
Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
10.
Recent advances in cellular optogenetics for photomedicine.
Abstract:
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
11.
Plant optogenetics: Applications and perspectives.
Abstract:
To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
12.
Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science.
Abstract:
We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
13.
The expanding role of split protein complementation in opsin-free optogenetics.
Abstract:
A comprehensive understanding of signaling mechanisms helps interpret fundamental biological processes and restore cell behavior from pathological conditions. Signaling outcome depends not only on the activity of each signaling component but also on their dynamic interaction in time and space, which remains challenging to probe by biochemical and cell-based assays. Opsin-based optogenetics has transformed neural science research with its spatiotemporal modulation of the activity of excitable cells. Motivated by this advantage, opsin-free optogenetics extends the power of light to a larger spectrum of signaling molecules. This review summarizes commonly used opsin-free optogenetic strategies, presents a historical overview of split protein complementation, and highlights the adaptation of split protein recombination as optogenetic sensors and actuators.
14.
Engineering Light-Control in Biology.
Abstract:
Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
15.
Design and engineering of light-sensitive protein switches.
Abstract:
Engineered, light-sensitive protein switches are used to interrogate a broad variety of biological processes. These switches are typically constructed by genetically fusing naturally occurring light-responsive protein domains with functional domains from other proteins. Protein activity can be controlled using a variety of mechanisms including light-induced colocalization, caging, and allosteric regulation. Protein design efforts have focused on reducing background signaling, maximizing the change in activity upon light stimulation, and perturbing the kinetics of switching. It is common to combine structure-based modeling with experimental screening to identify ideal fusion points between domains and discover point mutations that optimize switching. Here, we introduce commonly used light-sensitive domains and summarize recent progress in using them to regulate protein activity.
16.
B12-induced reassembly of split photoreceptor protein enables photoresponsive hydrogels with tunable mechanics.
Abstract:
Although the tools based on split proteins have found broad applications, ranging from controlled biological signaling to advanced molecular architectures, many of them suffer from drawbacks such as background reassembly, low thermodynamic stability, and static structural features. Here, we present a chemically inducible protein assembly method enabled by the dissection of the carboxyl-terminal domain of a B12-dependent photoreceptor, CarHC. The resulting segments reassemble efficiently upon addition of cobalamin (AdoB12, MeB12, or CNB12). Photolysis of the cofactors such as AdoB12 and MeB12 further leads to stable protein adducts harboring a bis-His-ligated B12. Split CarHC enables the creation of a series of protein hydrogels, of which the mechanics can be either photostrengthened or photoweakened, depending on the type of B12. These materials are also well suited for three dimensional cell culturing. Together, this new protein chemistry, featuring negligible background autoassembly, stable conjugation, and phototunability, has opened up opportunities for designing smart materials.
17.
A guide to designing photocontrol in proteins: methods, strategies and applications.
Abstract:
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
18.
Vitamin B12 photoreceptors.
Abstract:
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
19.
B12-dependent photoreceptor protein as an emerging tool for materials synthetic biology.
Abstract:
Controlling biomolecular interactions with light has gained traction among biomedical researchers due to its high spatiotemporal precision. Although a variety of photoresponsive chemical moieties are readily available thanks to the efforts made by chemists, genetically encoded photoswitches, also known as optogenetic tools, that are compatible with complex biological systems remain highly desirable. Recently, detailed mechanistic studies of the B12-dependent bacterial photoreceptor CarH have provided researchers with some new approaches to materials synthetic biology. Further development of this emerging molecular tool will continue to benefit future materials science and optogenetics.
20.
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.
Abstract:
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
21.
Optophysiology: Illuminating cell physiology with optogenetics.
Abstract:
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
22.
Optogenetic approaches in biotechnology and biomaterials.
Abstract:
Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
23.
Optogenetic strategies for the control of gene expression in yeasts.
Abstract:
Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
24.
Applications of Upconversion Nanoparticles in Cellular Optogenetics.
Abstract:
Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
25.
Role of the CarH photoreceptor protein environment in the modulation of cobalamin photochemistry.
Abstract:
The photochemistry of cobalamins has recently been found to have biological importance, with the discovery of bacterial photoreceptor proteins, such as CarH and AerR. CarH and AerR, are involved in the light regulation of carotenoid biosynthesis and bacteriochlorophyll biosynthesis, respectively, in bacteria. Experimental transient absorption spectroscopic studies have indicated unusual photochemical behavior of 5'-deoxy-5'-adenosylcobalamin (AdoCbl) in CarH, with excited-state charge separation between cobalt and adenosyl and possible heterolytic cleavage of the Co-adenosyl bond, as opposed to the homolytic cleavage observed in aqueous solution and in many AdoCbl-based enzymes. We employ molecular dynamics and hybrid quantum mechanical/molecular mechanical calculations to obtain a microscopic understanding of the modulation of the excited electronic states of AdoCbl by the CarH protein environment, in contrast to aqueous solution and AdoCbl-based enzymes. Our results indicate a progressive stabilization of the electronic states involving charge transfer (CT) from cobalt/corrin to adenine on changing the environment from gas phase to water to solvated CarH. The solvent exposure of the adenosyl ligand in CarH, the π-stacking interaction between a tryptophan and the adenine moiety, and the hydrogen-bonding interaction between a glutamate and the lower axial ligand of cobalt are found to contribute to the stabilization of the states involving CT to adenine. The combination of these three factors, the latter two of which can be experimentally tested via mutagenesis studies, is absent in an aqueous solvent environment and in AdoCbl-based enzymes. The favored CT from metal and/or corrin to adenine in CarH may promote heterolytic cleavage of the cobalt-adenosyl bond proposed by experimental studies. Overall, this work provides novel, to our knowledge, physical insights into the mechanism of CarH function and directions for future experimental investigations. The fundamental understanding of the mechanism of CarH functioning will serve the development of optogenetic tools based on the new class of B12-dependent photoreceptors.