Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 18 of 18 results
1.

Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light‐Control in Bacteria.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 9 Feb 2021 DOI: 10.1002/adbi.202000256 Link to full text
Abstract: Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light‐control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
2.

The rise and shine of yeast optogenetics.

blue green near-infrared red UV BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes UV receptors Review
Yeast, 29 Oct 2020 DOI: 10.1002/yea.3529 Link to full text
Abstract: Optogenetics refers to the control of biological processes with light. The activation of cellular phenomena by defined wavelengths has several advantages compared to traditional chemically-inducible systems, such as spatiotemporal resolution, dose-response regulation, low cost and moderate toxic effects. Optogenetics has been successfully implemented in yeast, a remarkable biological platform that is not only a model organism for cellular and molecular biology studies, but also a microorganism with diverse biotechnological applications. In this review, we summarize the main optogenetic systems implemented in the budding yeast Saccharomyces cerevisiae, which allow orthogonal control (by light) of gene expression, protein subcellular localization, reconstitution of protein activity, or protein sequestration by oligomerization. Furthermore, we review the application of optogenetic systems in the control of metabolic pathways, heterologous protein production and flocculation. We then revise an example of a previously described yeast optogenetic switch, named FUN-LOV, which allows precise and strong activation of the target gene. Finally, we describe optogenetic systems that have not yet been implemented in yeast, which could therefore be used to expand the panel of available tools in this biological chassis. In conclusion, a wide repertoire of optogenetic systems can be used to address fundamental biological questions and broaden the biotechnological toolkit in yeast.
3.

Optogenetics and biosensors set the stage for metabolic cybergenetics.

blue green near-infrared red UV violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains PAL Phytochromes UV receptors Review
Curr Opin Biotechnol, 11 Sep 2020 DOI: 10.1016/j.copbio.2020.07.012 Link to full text
Abstract: Cybergenetic systems use computer interfaces to enable feed-back controls over biological processes in real time. The complex and dynamic nature of cellular metabolism makes cybergenetics attractive for controlling engineered metabolic pathways in microbial fermentations. Cybergenetics would not only create new avenues of research into cellular metabolism, it would also enable unprecedented strategies for pathway optimization and bioreactor operation and automation. Implementation of metabolic cybergenetics, however, will require new capabilities from actuators, biosensors, and control algorithms. The recent application of optogenetics in metabolic engineering, the expanding role of genetically encoded biosensors in strain development, and continued progress in control algorithms for biological processes suggest that this technology will become available in the not so distant future.
4.

Lights up on organelles: Optogenetic tools to control subcellular structure and organization.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Wiley Interdiscip Rev Syst Biol Med, 26 Jul 2020 DOI: 10.1002/wsbm.1500 Link to full text
Abstract: Since the neurobiological inception of optogenetics, light-controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light-sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle-specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Physiology > Physiology of Model Organisms Biological Mechanisms > Regulatory Biology Models of Systems Properties and Processes > Cellular Models.
5.

Genetically-encoded biosensors for analyzing and controlling cellular process in yeast.

blue BLUF domains Cryptochromes Review
Curr Opin Biotechnol, 18 Jun 2020 DOI: 10.1016/j.copbio.2020.04.006 Link to full text
Abstract: Yeast has been a robust platform to manufacture a broad range of biofuels, commodity chemicals, natural products and pharmaceuticals. The membrane-bound organelles in yeast provide us the means to access the specialized metabolism for various biosynthetic applications. The separation and compartmentalization of genetic and metabolic events presents us the opportunity to precisely control and program gene expression for higher order biological functions. To further advance yeast synthetic biology platform, genetically encoded biosensors and actuators haven been engineered for in vivo monitoring and controlling cellular processes with spatiotemporal resolutions. The dynamic response, sensitivity and operational range of these genetically encoded sensors are determined by the regulatory architecture, dynamic assemly and interactions of the related proteins and genetic elements. This review provides an update of the basic design principles underlying the allosteric transcription factors, GPCR and optogenetics-based sensors, aiming to precisely analyze and control yeast cellular processes for various biotechnological applications.
6.

Non-neuromodulatory Optogenetic Tools in Zebrafish.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Front Cell Dev Biol, 3 Jun 2020 DOI: 10.3389/fcell.2020.00418 Link to full text
Abstract: The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
7.

Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_11 Link to full text
Abstract: Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
8.

Structural Basis of Design and Engineering for Advanced Plant Optogenetics.

blue green red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Plant Sci, 4 Nov 2019 DOI: 10.1016/j.tplants.2019.10.002 Link to full text
Abstract: In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
9.

Light-based control of metabolic flux through assembly of synthetic organelles.

blue CRY2/CRY2 CRY2olig PixD/PixE S. cerevisiae Organelle manipulation
Nat Chem Biol, 13 May 2019 DOI: 10.1038/s41589-019-0284-8 Link to full text
Abstract: To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.
10.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
11.

Blue-Light Receptors for Optogenetics.

blue green red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Opsins Phytochromes UV receptors Review
Chem Rev, 9 Jul 2018 DOI: 10.1021/acs.chemrev.8b00163 Link to full text
Abstract: Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
12.

Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli.

blue CRY2/CRY2 PixD/PixE NIH/3T3 Signaling cascade control Organelle manipulation
Cell Syst, 24 May 2018 DOI: 10.1016/j.cels.2018.05.002 Link to full text
Abstract: Protein/RNA clusters arise frequently in spatially regulated biological processes, from the asymmetric distribution of P granules and PAR proteins in developing embryos to localized receptor oligomers in migratory cells. This co-occurrence suggests that protein clusters might possess intrinsic properties that make them a useful substrate for spatial regulation. Here, we demonstrate that protein droplets show a robust form of spatial memory, maintaining the spatial pattern of an inhibitor of droplet formation long after it has been removed. Despite this persistence, droplets can be highly dynamic, continuously exchanging monomers with the diffuse phase. We investigate the principles of biophysical spatial memory in three contexts: a computational model of phase separation; a novel optogenetic system where light can drive rapid, localized dissociation of liquid-like protein droplets; and membrane-localized signal transduction from clusters of receptor tyrosine kinases. Our results suggest that the persistent polarization underlying many cellular and developmental processes could arise through a simple biophysical process, without any additional biochemical feedback loops.
13.

Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins.

blue BLUF domains Review
Biophys Rev, 12 Dec 2017 DOI: 10.1007/s12551-017-0355-6 Link to full text
Abstract: Photoreceptor proteins have been used to study how protein conformational changes are induced by alterations in their environments and how their signals are transmitted to downstream factors to dictate physiological responses. These proteins are attractive models because their signal transduction aspects and structural changes can be precisely regulated in vivo and in vitro based on light intensity. Among the known photoreceptors, members of the blue light-using flavin (BLUF) protein family have been well characterized with regard to how they control various light-dependent physiological responses in several microorganisms. Herein, we summarize our current understanding of their photoactivation and signal-transduction mechanisms. For signal transduction, we review recent studies concerning how the BLUF protein, PixD, transmits a light-induced signal to its downstream factor, PixE, to modulate phototaxis of the cyanobacterium Synechocystis sp. PCC6803.
14.

A proposal for a dipole-generated BLUF domain mechanism.

blue BLUF domains Review
Front Mol Biosci, 3 Nov 2015 DOI: 10.3389/fmolb.2015.00062 Link to full text
Abstract: The resting and signaling structures of the blue-light sensing using flavin (BLUF) photoreceptor domains are still controversially debated due to differences in the molecular models obtained by crystal and NMR structures. Photocycles for the given preferred structural framework have been established, but a unifying picture combining experiment and theory remains elusive. We summarize present work on the AppA BLUF domain from both experiment and theory. We focus on IR and UV/vis spectra, and to what extent theory was able to reproduce experimental data and predict the structural changes upon formation of the signaling state. We find that the experimental observables can be theoretically reproduced employing any structural model, as long as the orientation of the signaling essential Gln63 and its tautomer state are a choice of the modeler. We also observe that few approaches are comparative, e.g., by considering all structures in the same context. Based on recent experimental findings and a few basic calculations, we suggest the possibility for a BLUF activation mechanism that only relies on electron transfer and its effect on the local electrostatics, not requiring an associated proton transfer. In this regard, we investigate the impact of dispersion correction on the interaction energies arising from weakly bound amino acids.
15.

Blue light-mediated manipulation of transcription factor activity in vivo.

blue PixD/PixE zebrafish in vivo Developmental processes
ACS Chem Biol, 24 Sep 2013 DOI: 10.1021/cb400174d Link to full text
Abstract: We developed a novel technique for manipulating the activity of transcription factors with blue light (termed "PICCORO") using the bacterial BLUF-type photoreceptor protein PixD. The chimeric dominant-negative T-box transcription factor No Tail formed heterologous complexes with a PixD decamer in a light-dependent manner, and these complexes affected transcription repressor activity. When applied to zebrafish embryos, PICCORO permitted regulation of the activity of the mutant No Tail in response to 472-nm light provided by a light-emitting diode.
16.

A predicted structure for the PixD-PixE complex determined by homology modeling, docking simulations, and a mutagenesis study.

blue BLUF domains Background
Biochemistry, 7 Feb 2013 DOI: 10.1021/bi301004v Link to full text
Abstract: PixD is a blue light-using flavin (BLUF) photoreceptor that controls phototaxis in the cyanobacterium Synechocystis sp. PCC6803. PixD interacts with the response regulator-like protein PixE in a light-dependent manner, and this interaction is critical for light signal transduction in vivo. However, the structure of the PixD-PixE complex has not been determined. To improve our understanding of how PixD transmits its captured light signal to PixE, we used blue-native polyacrylamide gel electrophoresis to characterize the molecular mass of a recombinant PixD-PixE complex purified from Escherichia coli and found it to be 342 kDa, suggesting that the complex contains 10 PixD and 4 PixE monomers. The stoichiometry of the complex was confirmed by Western blotting. Specifically, three intermediate states, PixD(10)-PixE(1), PixD(10)-PixE(2), and PixD(10)-PixE(3), were detected. The apparent dissociation constant for PixE and PixD is ~5 μM. A docking simulation was performed using a modeled PixE structure and the PixD(10) crystal structure. The docking simulation showed how the molecules in the PixD(10)-PixE(4) structure interact. To verify the accuracy of the docked model, a site-directed mutagenesis study was performed in which Arg80 of PixE, which appears to be capable of interacting electrostatically with Asp135 of PixD in the predicted structure, was shown to be critical for complex formation as mutation of PixE Arg80 to Asp or Ala prevented PixD-PixE complex formation. This study provides a structural basis for future investigations of the light signal transduction mechanism involving PixD and PixE.
17.

Time-resolved tracking of interprotein signal transduction: Synechocystis PixD-PixE complex as a sensor of light intensity.

blue BLUF domains Background
J Am Chem Soc, 11 May 2012 DOI: 10.1021/ja301540r Link to full text
Abstract: PixD (Slr1694) is a blue light receptor that contains a BLUF (blue light sensors using a flavin chromophore) domain. A protein-protein interaction between PixD and a response regulator PixE (Slr1693) is essential to achieve light signal transduction for phototaxis of the species. Although the initial photochemical reaction of PixD, the red shift of the flavin absorption spectrum, has been investigated, the subsequent reaction dynamics remain largely unresolved. Only the disassembly of the PixD(10)-PixE(5) dark complex has been characterized by static size exclusion chromatography. In this report, interprotein reaction dynamics were examined using time-resolved transient grating spectroscopy. The dissociation process was clearly observed as the light-induced diffusion coefficient change in the time domain, and the kinetics was determined. More strikingly, disassembly was found to take place only after photoactivation of two PixD subunits in the complex. This result suggests that the biological response of PixD does not follow a linear correlation with the light intensity but appears to be light-intensity-dependent.
18.

PixE promotes dark oligomerization of the BLUF photoreceptor PixD.

blue BLUF domains Background
Proc Natl Acad Sci USA, 11 Aug 2008 DOI: 10.1073/pnas.0802149105 Link to full text
Abstract: Cyanobacteria perceive and move (phototax) in response to blue light. In this study, we demonstrate that the PixD blue light-sensing using FAD (BLUF) photoreceptor that governs this response undergoes changes in oligomerization state upon illumination. Under dark conditions we observed that PixD forms a large molecular weight complex with another protein called PixE. Stoicheometric analyses, coupled with sedimentation equilibrium and size exclusion chromatography, demonstrates that PixE drives aggregation of PixD dimers into a stable PixD(10)-PixE(5) complex under dark conditions. Illumination of a flavin chromophore in PixD destabilizes the PixD(10)-PixE(5) complex into monomers of PixE and dimers of PixD. A crystallographic structure of PixD, coupled with Gibbs free energy calculation between interacting faces of PixD, lends to a model in which a light induces a conformational change in a critical PixD-interfacing loop that results in destabilization of the PixD(10)-PixE(5) complex.
Submit a new publication to our database