Showing 1 - 25 of 197 results
Not Review
Not Background
1.
Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription.
Abstract:
Morphogen gradients convey essential spatial information during tissue patterning. Although the concentration and timing of morphogen exposure are both crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homolog of NF-κB, which orchestrates dorsoventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning and characterized the resulting effect on spatiotemporal transcription of target genes in terms of timing, coordination and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL was detectable at the level of single-cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.
2.
A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration.
-
Iu, E
-
Bogatch, A
-
Deng, W
-
Humphries, JD
-
Yang, C
-
Valencia, FR
-
Li, C
-
McCulloch, CA
-
Tanentzapf, G
-
Svitkina, TM
-
Humphries, MJ
-
Plotnikov, SV
Abstract:
Cell migration is crucial for development and tissue homeostasis, while its dysregulation leads to severe pathologies. Cell migration is driven by the extension of actin-based lamellipodia protrusions, powered by actin polymerization, which is tightly regulated by signaling pathways, including Rho GTPases and Ca2+ signaling. While the importance of Ca2+ signaling in lamellipodia protrusions has been established, the molecular mechanisms linking Ca2+ to lamellipodia assembly are unknown. Here, we identify a novel Ca2+ signaling axis involving the mechano-gated channel TRPV4, which regulates lamellipodia protrusions in various cell types. Using Ca2+ and FRET imaging, we demonstrate that TRPV4-mediated Ca2+ influx upregulates RhoA activity within lamellipodia, which then facilitates formin-mediated actin assembly. Mechanistically, we identify CaMKII and TEM4 as key mediators relaying the TRPV4-mediated Ca2+ signal to RhoA. These data define a molecular pathway by which Ca2+ influx regulates small GTPase activity within a specific cellular domain – lamellipodia - and demonstrate the critical role in organizing the actin machinery and promoting cell migration in diverse biological contexts.
3.
Optogenetic tools for inducing organelle membrane rupture.
Abstract:
Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of specific organelles is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of organelle membrane rupture remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), which primarily functions to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their targeted membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2-BAX fusion protein exhibits blue light-dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2-BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.
4.
An improved FLARE system for recording and manipulating neuronal activity.
Abstract:
To address the need for methods for tagging and manipulating neuronal ensembles underlying specific behaviors, we present an improved version of FLARE, termed cytoFLARE (cytosol-expressed FLARE). cytoFLARE incorporates cytosolic tethering of a transcription factor and expression of a more sensitive pair of calcium-sensing domains. We show that cytoFLARE captures more calcium- and light-dependent signals in HEK293T cells and higher signal-to-background ratios in neuronal cultures. We further establish cytoFLARE transgenic Drosophila models and apply cytoFLARE to label activated neurons upon sensory or optogenetic stimulation within a defined time window. Notably, through the cytoFLARE-driven expression of optogenetic actuators, we successfully reactivated and inhibited neurons involved in the larval nociceptive system. Our findings demonstrate the characterization and application of time-gated calcium integrators for both recording and manipulating neuronal activity in Drosophila larvae.
5.
Spontaneous Calcium Bursts Organize the Apical Actin Cytoskeleton of Multiciliated Cells.
Abstract:
Motile cilia perform crucial functions during embryonic development and in adult tissues. They are anchored by an apical actin network that forms microridge-like structures on the surface of multiciliated cells. Using Xenopus as a model system to investigate the mechanisms underlying the formation of these specialized actin structures, we observed stochastic bursts of intracellular calcium concentration in developing multiciliated cells. Through optogenetic manipulation of calcium signaling, we found that individual calcium bursts triggered the fusion and extension of actin structures by activating non-muscle myosin. Repeated cycles of calcium activation promoted assembly and coherence of the maturing apical actin network. Inhibition of the endogenous inositol triphosphate-calcium pathway disrupted the formation of apical actin/microridge-like structures by reducing local centriolar RhoA signaling. This disruption was rescued by transient expression of constitutively active RhoA in multiciliated cells. Our findings identify repetitive calcium bursts as a driving force that promotes the self-organization of the highly specialized actin cytoskeleton of multiciliated cells.
6.
Crosstalk between Rac and Rap GTPases in migrating cells.
Abstract:
To enable effective cell migration, local cell protrusion has to be coordinated with local cell attachment. Here, we investigate spatio-temporal activity patterns of key regulators of cell protrusion and adhesion, the small GTPases Rac and Rap, in migrating cells. These analyses show that Rac activity correlates very tightly with instantaneous cell protrusion events, while the Rap activity stays elevated for prolonged time periods after protrusion and is also detectable before cell protrusion. Direct analysis of activity crosstalk in living cells via light-based perturbation methods revealed that Rap can efficiently activate Rac, however, reciprocal crosstalk from Rac to Rap was not detectable. These findings suggest that Rap plays an instructive role in the generation of cell protrusions by its ability to activate Rac. Furthermore, prolonged Rap activity suggests that this molecule also plays a role in maintenance or stabilization of cell protrusions. Indeed, morphological analysis of Rap1-depleted A431 cells revealed a significant reduction of the cell attachment area, suggesting that Rap stimulated cell adhesion might indeed stabilize newly formed protrusions. Taken together, our study suggests a mechanism, by which cell protrusion is coupled to cell adhesion via unidirectional crosstalk that connects the activity of the small GTPases Rap and Rac.
7.
Spatially regulated mRNA decay sharpens expression patterns in the Drosophila embryo.
Abstract:
The regulation of mRNA decay is important for numerous cellular and developmental processes. Here, we use the patterning gene even-skipped (eve) in the early Drosophila embryo to investigate the contribution of mRNA decay to shaping mature expression patterns. Through P-body colocalisation analysis and mathematical modelling of live and fixed imaging data, we present evidence that eve mRNA stability is regulated across stripe 2, with enhanced mRNA decay at the edges of the stripe. To manipulate mRNA stability, we perturbed mRNA decay in the embryo by optogenetic degradation of the 5’ to 3’ exoribonuclease Pacman (Pcm). Depleting Pcm results in larger P-bodies, which accumulate eve mRNAs, and disrupted eve expression patterns. Overall, these data show how eve mRNA instability can function with transcriptional regulation to define sharp expression domain borders. We discuss how spatially regulated mRNA stability may be widely used to sculpt expression patterns during development.
8.
A Chemogenetic Toolkit for Inducible, Cell Type-Specific Actin Disassembly.
Abstract:
The actin cytoskeleton and its nanoscale organization are central to all eukaryotic cells-powering diverse cellular functions including morphology, motility, and cell division-and is dysregulated in multiple diseases. Historically studied largely with purified proteins or in isolated cells, tools to study cell type-specific roles of actin in multicellular contexts are greatly needed. DeActs are recently created, first-in-class genetic tools for perturbing actin nanostructures and dynamics in specific cell types across diverse eukaryotic model organisms. Here, ChiActs are introduced, the next generation of actin-perturbing genetic tools that can be rapidly activated in cells and optogenetically targeted to distinct subcellular locations using light. ChiActs are composed of split halves of DeAct-SpvB, whose potent actin disassembly-promoting activity is restored by chemical-induced dimerization or allosteric switching. It is shown that ChiActs function to rapidly induce actin disassembly in several model cell types and are able to perturb actin-dependent nano-assembly and cellular functions, including inhibiting lamellipodial protrusions and membrane ruffling, remodeling mitochondrial morphology, and reorganizing chromatin by locally constraining actin disassembly to specific subcellular compartments. ChiActs thus expand the toolbox of genetically-encoded tools for perturbing actin in living cells, unlocking studies of the many roles of actin nano-assembly and dynamics in complex multicellular systems.
9.
Light-activated tetanus neurotoxin for conditional proteolysis and inducible synaptic inhibition in vivo.
-
Roh, H
-
Kim, D
-
Kim, B
-
Jeon, Y
-
Kim, Y
-
Jacko, M
-
Xu, F
-
Lin, C
-
Um, JW
-
Ting, AY
Abstract:
The light chain of tetanus neurotoxin (TeNT) is a 52 kD metalloprotease that potently inhibits synaptic transmission by cleaving the endogenous vesicle fusion protein VAMP2. To mitigate the toxicity of TeNT and harness it as a conditional tool for neuroscience, we engineered Light-Activated TeNT (LATeNT) via insertion of the light-sensitive LOV domain into an allosteric site. LATeNT was optimized by directed evolution and shown to have undetectable activity in the dark mammalian brain. Following 30 seconds of weak blue light exposure, however, LATeNT potently inhibited synaptic transmission in multiple brain regions. The effect could be reversed over 24 hours. We used LATeNT to discover an interneuron population in hippocampus that controls anxiety-like behaviors in mouse, and to control the secretion of endogenous insulin from pancreatic beta cells. Synthetic circuits incorporating LATeNT converted drug, Ca2+, or receptor activation into transgene expression or reporter protein secretion. Due to its large dynamic range, rapid kinetics, and highly specific mechanism of action, LATeNT should be a robust tool for conditional proteolysis and spatiotemporal control of synaptic transmission in vivo.
10.
A modular toolbox for the optogenetic deactivation of transcription.
Abstract:
Light-controlled transcriptional activation is a commonly used optogenetic strategy that allows researchers to regulate gene expression with high spatiotemporal precision. The vast majority of existing tools are, however, limited to light-triggered induction of gene expression. Here, we inverted this mode of action and created optogenetic systems capable of efficiently terminating transcriptional activation in response to blue light. First, we designed highly compact regulators by photo-controlling the VP16 (pcVP16) transactivation peptide. Then, applying a two-hybrid strategy, we engineered LOOMINA (light off-operated modular inductor of transcriptional activation), a versatile transcriptional control platform for mammalian cells that is compatible with various effector proteins. Leveraging the flexibility of CRISPR systems, we combined LOOMINA with dCas9 to control transcription with blue light from endogenous promoters with exceptionally high dynamic ranges in multiple cell lines. Functionally and mechanistically, the versatile LOOMINA platform and the exceptionally compact pcVP16 transactivator represent valuable additions to the optogenetic repertoire for transcriptional regulation.
11.
CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration.
Abstract:
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
12.
Optogenetics Methods and Protocols
-
Haller, DJ
-
Castillo-Hair, SM
-
Tabor, JJ
-
Harmer, ZP
-
McClean, MN
-
Renzl, C
-
Mayer, G
-
Nakajima, T
-
Kuwasaki, Y
-
Yamamoto, S
-
Otabe, T
-
Sato, M
-
Shkarina, K
-
Broz, P
-
Jia Ying Toh, P
-
Kroll, KL
-
Sosnick, TR
-
Rock, RS
-
Tadimarri, VS
-
Sankaran, S
-
Lindner, F
-
Grossmann, S
-
Diepold, A
-
Knapp, F
-
Hogenkamp, F
-
Paik, S
-
Jaeger, K
-
Pietruszka, J
-
Drepper, T
-
Armbruster, A
-
Hörner, M
-
Weber, W
-
Jaeger, M
-
Vincentelli, R
-
Lasserre, R
-
Qiu, K
-
Xu, X
-
Zhang, K
-
Diao, J
-
Song, Y
-
Huang, P
-
Duan, L
-
Li, M
-
Park, BM
-
Li, Z
-
Huang, W
-
Sun, F
-
Gerrard, EJ
-
Tichy, A
-
Janovjak, H
-
Gangemi, CG
-
Wegner, SV
-
Raab, CA
Abstract:
This volume explores the latest advancements in the field of optogenetics and how it uses cellular light-sensing components and genetic engineering to control proteins and biological processes. The book chapters are organized into four parts. Part One focuses on intracellular optogenetic components for control of specific cell functions; Part Two looks at externally supplied light regulators that do not require genetic manipulation of target cells; Part Three highlights optogenetic control of organelles, and Part Four introduces technical tools required for light induction in optogenetic experiments, as well as a method for performing and analyzing optogenetic cell-cell adhesion. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Optogenetics: Methods and Protocols is a valuable resource to help researchers understand and apply the concepts of optogenetics and the underlying bioengineering principles, and establish the required technical light-illumination setups for administering light inputs and analysis of experimental outcomes.
13.
Studying ER-membrane contact sites in plants using the optogenetic approach: Taking the LiMETER as an example.
Abstract:
The endoplasmic reticulum (ER) links to multiple organelles through membrane contact sites (MCS), which play critical roles in signal transduction, cell homeostasis and stress response. However, studying the behaviour and functions of MCS in plants is still challenging, partially due to the lack of site-specific markers. Here, we used an optogenetic reporter, LiMETER (Light-inducible Membrane-Tethered cortical ER), to study the structure and dynamics of ER-PM contact sites (EPCS) in plants. Upon blue light activation, LiMETER is recruited to the EPCS rapidly, while this process is reversible when blue light is turned off. Compared with other EPCS reporters, LiMETER specifically and reversibly labels the contact sites, causing little side-effects on the ER structure and plant development. With its help, we re-examined the formation of ER-PM connections induced by cell-intrinsic factors or extracellular stimuli. We found that EPCSs are preferably localised at ER tubules and the edge of ER cisternae, and their number increased significantly under abiotic stress conditions. The abundance of ER and PM interaction is also developmental dependent, suggesting a direct link between ER-PM interaction, ER function and cell homeostasis. Taken together, we showed that LiMETER is an improved marker for functional and microscopical studies of ER-PM interaction, demonstrating the effectiveness of optogenetic tools in future research.
14.
Optogenetically Induced Microtubule Acetylation Unveils the Molecular Dynamics of Actin-Microtubule Crosstalk in Directed Cell Migration.
Abstract:
Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells. Using optoTAT, we observed striking and rapid responses at both molecular and cellular level. First, microtubule acetylation triggers release of the RhoA activator GEF-H1 from sequestration on microtubules. This release subsequently enhances actomyosin contractility and drives focal adhesion maturation. These subcellular processes collectively promote sustained directional cell migration. Our findings position GEF-H1 as a critical molecular responder to microtubule acetylation in the regulation of directed cell migration, revealing a dynamic crosstalk between the actin and microtubule cytoskeletal networks.
15.
Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription.
Abstract:
Morphogen gradients convey essential spatial information during tissue patterning. While both concentration and timing of morphogen exposure are crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homologue of NF-κB, which orchestrates dorso-ventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning, and characterized the resulting effect on spatio-temporal transcription of target genes in terms of timing, coordination, and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL is detectable at the level of single cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally-resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.
16.
A Versatile Anti-CRISPR Platform for Opto- and Chemogenetic Control of CRISPR-Cas9 and Cas12 across a Wide Range of Orthologs.
-
Brenker, L
-
Aschenbrenner, S
-
Bubeck, F
-
Staykov, K
-
Gebhardt, C
-
Wolf, B
-
Jendrusch, M
-
Kröll, A
-
Mathony, J
-
Niopek, D
Abstract:
CRISPR-Cas technologies have revolutionized life sciences by enabling programmable genome editing across diverse organisms. Achieving dynamic and precise control over CRISPR-Cas activity with exogenous triggers, such as light or chemical ligands, remains an important need. Existing tools for CRISPR-Cas control are often limited to specific Cas orthologs or selected applications, restricting their versatility. Anti-CRISPR (Acr) proteins, natural inhibitors of CRISPR-Cas systems, provide a flexible regulatory layer but are constitutively active in their native forms. In this study, we built on our previously reported concept for optogenetic CRISPR-Cas control with engineered, light-switchable anti-CRISPR proteins and expanded it from ortholog-specific Acrs towards AcrIIA5 and AcrVA1, broad-spectrum inhibitors of CRISPR-Cas9 and -Cas12a, respectively. We then conceived and implemented a novel, chemogenetic anti-CRISPR platform based on engineered, circularly permuted ligand receptor domains of human origin, that together respond to six different, clinically-relevant drugs. The resulting toolbox achieves both optogenetic and chemogenetic control of genome editing in human cells with a wide range of CRISPR-Cas effectors, including type II-A and -C CRISPR-Cas9s, and -Cas12a. In sum, this work establishes a versatile platform for multidimensional control of CRISPR-Cas systems, with immediate applications in basic research and biotechnology and potential for therapeutic use in the future.
17.
Optogenetic dissection of transcriptional repression in a multicellular organism.
Abstract:
Transcriptional control is fundamental to cellular function. However, despite knowing that transcription factors can repress or activate specific genes, how these functions are implemented at the molecular level has remained elusive, particularly in the endogenous context of developing animals. Here, we combine optogenetics, single-cell live-imaging, and mathematical modeling to study how a zinc-finger repressor, Knirps, induces switch-like transitions into long-lived quiescent states. Using optogenetics, we demonstrate that repression is rapidly reversible (~1 min) and memoryless. Furthermore, we show that the repressor acts by decreasing the frequency of transcriptional bursts in a manner consistent with an equilibrium binding model. Our results provide a quantitative framework for dissecting the in vivo biochemistry of eukaryotic transcriptional regulation.
18.
Optogenetically engineered Septin-7 enhances immune cell infiltration of tumor spheroids.
Abstract:
Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells. Using protein allosteric design, we reprogram the three-dimensional structure of septin-7 and insert a blue light-responsive light-oxygen-voltage-sensing domain 2 (LOV2), creating a light-controllable septin-7-LOV2 hybrid protein. Blue light inhibits septin-7 function in live cells, inducing extended cell protrusions and cell polarization, enhancing cell transmigration efficiency through confining spaces. We genetically edited human natural killer cell line (NK92) and mouse primary CD8+ T-cells expressing the engineered protein, and we demonstrated improved penetration and cytotoxicity against various tumor spheroid models. Our proposed strategy to enhance immune cell infiltration is compatible with other methodologies and therefore, could be used in combination to further improve cell-based immunotherapies against solid tumors.
19.
Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.
-
Inaba, H
-
Imasaki, T
-
Aoyama, K
-
Yoshihara, S
-
Takazaki, H
-
Kato, T
-
Goto, H
-
Mitsuoka, K
-
Nitta, R
-
Nakata, T
Abstract:
Lamellipodia are sheet-like protrusions essential for migration and endocytosis, yet the ultrastructure of the actin cytoskeleton during lamellipodia formation remains underexplored. Here, we combined the optogenetic tool PA-Rac1 with cryo-ET to enable ultrastructural analysis of newly formed lamellipodia. We successfully visualized lamellipodia at various extension stages, representing phases of their formation. In minor extensions, several unbundled actin filaments formed “Minor protrusions” at the leading edge. For moderately extended lamellipodia, cross-linked actin filaments formed small filopodia-like structures, termed “mini filopodia.” In fully extended lamellipodia, filopodia matured at multiple points, and cross-linked actin filaments running nearly parallel to the leading edge increased throughout the lamellipodia. These observations suggest that actin polymerization begins in specific plasma membrane regions, forming mini filopodia that either mature into full filopodia or detach from the leading edge to form parallel filaments. This actin turnover likely drives lamellipodial protrusion, providing new insights into actin dynamics and cell migration.
20.
Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells.
Abstract:
Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import of proteins into the mitochondrial matrix via the presequence pathway on demand. OptoMitoImport is based on a two-step process: first, light-induced cleavage by a TEV protease cuts off a plasma membrane-anchored fusion construct in close proximity to a mitochondrial targeting sequence; second, the mitochondrial targeting sequence preceding the protein of interest recruits to the outer mitochondrial membrane and imports the protein fused to it into mitochondria. Upon reaching the mitochondrial matrix, the matrix processing peptidase cuts off the mitochondrial targeting sequence and releases the protein of interest. OptoMitoImport is available as a two-plasmid system as well as a P2A peptide or IRES sequence-based bicistronic system. Fluorescence studies demonstrate the release of the plasma membrane-anchored protein of interest through light-induced TEV protease cleavage and its localization to mitochondria. Cell fractionation experiments confirm the presence of the peptidase-cleaved protein of interest in the mitochondrial fraction. The processed product is protected from proteinase K treatment. Depletion of the membrane potential across the inner mitochondria membrane prevents the mitochondrial protein import, indicating an import of the protein of interest by the presequence pathway. These data demonstrate the functionality of OptoMitoImport as a generic system with which to control the post-translational mitochondrial import of proteins via the presequence pathway.
21.
Structural basis for a nucleoporin exportin complex between RanBP2, SUMO1-RanGAP1, the E2 Ubc9, Crm1 and the Ran GTPase.
Abstract:
The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 with motifs that also catalyze SUMO E3 ligase activity. Here, we resolve cryo-EM structures of a RanBP2 C-terminal fragment bound to Crm1, SUMO1-RanGAP1/Ubc9, and two molecules of Ran(GTP), one bound to Crm1 and the other bound to RanGAP1 and RanBP2. These structures reveal several unanticipated interactions with Crm1 including a nuclear export signal (NES) for RanGAP1, the deletion of which mislocalizes RanGAP1 and the Ran GTPase in cells. Our structural and biochemical results support models in which RanBP2 E3 ligase activity is dependent on Crm1, the RanGAP1 NES and Ran GTPase cycling.
22.
Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.
Abstract:
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
23.
Optogenetic tools for inducing organelle membrane rupture.
Abstract:
Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of organelles of interest is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of rupture of specific membranes remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), whose primary function is to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their target membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2–BAX fusion protein exhibits blue light–dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2–BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.
24.
Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement.
-
Vierkant, V
-
Xie, X
-
Huang, Z
-
He, L
-
Bancroft, E
-
Wang, X
-
Nguyen, T
-
Srinivasan, R
-
Zhou, Y
-
Wang, J
Abstract:
Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another.
25.
Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems.
-
Gillespie, W
-
Zhang, Y
-
Ruiz, OE
-
Cerda III, J
-
Ortiz-Guzman, J
-
Turner, WD
-
Largoza, G
-
Sherman, M
-
Mosser, LE
-
Fujimoto, E
-
Chien, CB
-
Kwan, KM
-
Arenkiel, BR
-
Devine, WP
-
Wythe, JD
Abstract:
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 “Entry” vector components, all into a fourth, standard high copy “Destination” plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.