Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"DdPAC"
Showing 1 - 2 of 2 results
Not Review Not Background
1.

Pulsatile illumination for photobiology and optogenetics.

blue red DdPAC YtvA E. coli Immediate control of second messengers
Meth Enzymol, 26 Apr 2019 DOI: 10.1016/bs.mie.2019.04.005 Link to full text
Abstract: Living organisms exhibit a wide range of intrinsic adaptive responses to incident light. Likewise, in optogenetics, biological systems are tailored to initiate predetermined cellular processes upon light exposure. As genetically encoded, light-gated actuators, sensory photoreceptors are at the heart of these responses in both the natural and engineered scenarios. Upon light absorption, photoreceptors enter a series of generally rapid photochemical reactions leading to population of the light-adapted signaling state of the receptor. Notably, this state persists for a while before thermally reverting to the original dark-adapted resting state. As a corollary, the inactivation of photosensitive biological circuits upon light withdrawal can exhibit substantial inertia. Intermittent illumination of suitable pulse frequency can hence maintain the photoreceptor in its light-adapted state while greatly reducing overall light dose, thereby mitigating adverse side effects. Moreover, several photoreceptor systems may be actuated sequentially with a single light color if they sufficiently differ in their inactivation kinetics. Here, we detail the construction of programmable illumination devices for the rapid and parallelized testing of biological responses to diverse lighting regimes. As the technology is based on open electronics and readily available, inexpensive components, it can be adopted by most laboratories at moderate expenditure. As we exemplify for two use cases, the programmable devices enable the facile interrogation of diverse illumination paradigms and their application in optogenetics and photobiology.
2.

Characterization and engineering of photoactivated adenylyl cyclases.

blue red bPAC (BlaC) DdPAC PaaC E. coli Immediate control of second messengers
Biol Chem, 9 Jan 2019 DOI: 10.1515/hsz-2018-0375 Link to full text
Abstract: Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3′, 5′-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.
Submit a new publication to our database