Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Charlene Boumendil"
Showing 1 - 1 of 1 results
1.

Using LEXY and LINuS Optogenetics Tools and Automated Image Analysis to Quantify Nucleocytoplasmic Transport Dynamics in Live Cells.

blue AsLOV2 NIH/3T3
J Vis Exp, 22 Jul 2025 DOI: 10.3791/68585 Link to full text
Abstract: Nucleocytoplasmic transport (NCT) is essential for maintaining cellular homeostasis, and its disruption is involved in various diseases, including neurodegenerative disorders and amyotrophic lateral sclerosis. This underscores the need to develop tools to monitor and quantify NCT. Amongst these tools, the fast and reversible optogenetics probes, LEXY (light-inducible nuclear export system) and LINuS (light-inducible nuclear localization signal), allow the measurement of NCT dynamics in live cells. The original publications describe manual segmentation and quantification of the fluorescent probe signal in the nucleus and cytosol upon transfection of LEXY and LINuS constructs in live-cell imaging. However, both transfection and manual segmentation limit the number of cells that can be analyzed and are subject to imprecision due to potential user-dependent errors. While the high speed and reversibility provided by optogenetics should, in principle, allow for high sensitivity in detecting changes in NCT dynamics, it depends on the acquisition parameters and analysis of a sufficient number of cells. We have therefore established lentiviral vectors expressing LEXY and LINuS to create stable cell lines, tested live imaging markers and control conditions, and implemented a semi-automated image analysis pipeline that allows for the analysis of hundreds of cells. This analysis method uses the open-access software FIJI, is accessible to beginners in bioinformatics, and does not require advanced computer setups. Here we provide a step-by-step protocol to set up LEXY as an example of these optogenetic tools to monitor nuclear export, from preparation of the samples to live-cell imaging acquisition and automated analysis, while demonstrating how to adapt the protocol for other conditions, controls, or models in any lab. All plasmids and cell lines used in this protocol will be made available to the scientific community, therefore further increasing the accessibility of the method.
Submit a new publication to our database