Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Harrison R Oatman"
Showing 1 - 2 of 2 results
1.

PyCLM: programming-free, closed-loop microscopy for real-time measurement, segmentation, and optogenetic stimulation.

blue CRY2olig MCF10A Control of cell-cell / cell-material interactions
bioRxiv, 4 Sep 2025 DOI: 10.1101/2025.08.29.673155 Link to full text
Abstract: In cell biology, optical techniques are increasingly used to measure cells' internal states (biosensors) and to stimulate cellular responses (optogenetics). Yet the design of all-optical experiments is often manual: a pre-determined stimulus pattern is applied to cells, biosensors are measured over time, and the resulting data is processed off-line. With the advent of machine learning for segmentation and tracking, it becomes possible to envision closed-loop experiments where real-time information about cells' positions and states are used to dynamically determine optogenetic stimuli to alter or control their behavior. Here, we develop PyCLM, a Python-based suite of tools to enable real-time measurement, image segmentation, and optogenetic control of thousands of cells per experiment. PyCLM is designed to be as simple for the end user as possible, and multipoint experiments can be set up that combine a wide variety of imaging, image processing, and stimulation modalities without any programming. We showcase PyCLM on diverse applications: studying the effect of epidermal growth factor receptor activity waves on epithelial tissue movement, simultaneously stimulating ~1,000 single cells to guide tissue flows, and performing real-time feedback control of cell-to-cell fluorescence heterogeneity. This tool will enable the next generation of dynamic experiments to probe cell and tissue properties, and provides a first step toward precise control of cell states at the tissue scale.
2.

Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Development, 1 Sep 2023 DOI: 10.1242/dev.201818 Link to full text
Abstract: Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.
Submit a new publication to our database