Showing 1 - 4 of 4 results
1.
Effects of binding partners on thermal reversion rates of photoswitchable molecules.
Abstract:
The binding of photoswitchable molecules to partners forms the basis of many naturally occurring light-dependent signaling pathways and various photopharmacological and optogenetic tools. A critical parameter affecting the function of these molecules is the thermal half-life of the light state. Reports in the literature indicate that, in some cases, a binding partner can significantly influence the thermal half-life, while in other cases it has no effect. Here, we present a unifying framework for quantitatively analyzing the effects of binding partners on thermal reversion rates. We focus on photoswitchable protein/binder interactions involving LOV domains, photoactive yellow protein, and CBCR GAF domains with partners that bind either the light or the dark state of the photoswitchable domain. We show that the effect of a binding partner depends on the extent to which the transition state for reversion resembles the dark state or the light state. We quantify this resemblance with a ϕswitching value, where ϕswitching = 1 if the conformation of the part of the photoswitchable molecule that interacts with the binding partner closely resembles its dark state conformation and ϕswitching = 0 if it resembles its light state. In addition to providing information on the transition state for switching, this analysis can guide the design of photoswitchable systems that retain useful thermal half-lives in practice. The analysis also provides a basis for the use of simple kinetic measurements to determine effective changes in affinity even in complex milieu.
2.
Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.
Abstract:
Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
3.
Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates.
Abstract:
Cyanobacteriochromes (CBCRs) are photoreceptors consisting of single or tandem GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domains that bind bilin chromophores. Canonical red/green CBCR GAF domains are a well-characterized subgroup of the expanded red/green CBCR GAF domain family that binds phycocyanobilin (PCB) and converts between a thermally stable red-absorbing Pr state and a green-absorbing Pg state. The rate of thermal reversion from Pg to Pr varies widely among canonical red/green CBCR GAF domains, with half-lives ranging from days to seconds. Since the thermal reversion rate is an important parameter for the application of CBCR GAF domains as optogenetic tools, the molecular factors controlling the thermal reversion rate are of particular interest. Here, we report that point mutations in a well-conserved W(S/G)GE motif alter reversion rates in canonical red/green CBCR GAF domains in a predictable manner. Specifically, S-to-G mutations enhance thermal reversion rates, while the reverse, G-to-S mutations slow thermal reversion. Despite the distance (>10 Å) of the mutation site from the chromophore, molecular dynamics simulations and nuclear magnetic resonance (NMR) analyses suggest that the presence of a glycine residue allows the formation of a water bridge that alters the conformational dynamics of chromophore-interacting residues, leading to enhanced Pg to Pr thermal reversion.
4.
Directed evolution approaches for optogenetic tool development.
Abstract:
Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.