Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Kimmo Lehtinen"
Showing 1 - 2 of 2 results
1.

Traits of Bathy Phytochromes and Application to Bacterial Optogenetics.

red Phytochromes Background
ACS Synth Biol, 11 Jul 2025 DOI: 10.1021/acssynbio.5c00337 Link to full text
Abstract: Phytochromes are photoreceptors sensitive to red and far-red light, found in a wide variety of organisms, including plants, fungi, and bacteria. Bacteriophytochromes (BphPs) can be switched between a red light-sensitive Pr state and a far-red light-sensitive Pfr state by illumination. In so-called prototypical BphPs, the Pr state functions as the thermally favored resting state, whereas Pfr is more stable in bathy BphPs. The prototypical DrBphP from Deinococcus radiodurans has been shown to be compatible with different output module types. Even though red light-regulated optogenetic tools are available, like the pREDusk system based on the DrBphP photosensory module, far-red light-modulated variants are still rare. Here, we study the underlying contributors to bathy over prototypical BphP behavior by way of various chimeric constructs between pREDusk and representative bathy BphPs. We pinpoint shared traits of the otherwise heterogeneous subgroup of bathy BphPs and highlight the importance of the sensor-effector linker in light modulation of histidine kinase activity. Informed by these data, we introduce the far-red light-activated system "pFREDusk", based on a histidine kinase activity governed by a bathy photosensory module. With this tool, we expand the optogenetic toolbox into wavelengths of increased sample and tissue penetration.
2.

Red Light Optogenetics in Neuroscience.

blue near-infrared red LOV domains Phytochromes Review
Front Cell Neurosci, 3 Jan 2022 DOI: 10.3389/fncel.2021.778900 Link to full text
Abstract: Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.
Submit a new publication to our database