Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Lee Roth"
Showing 1 - 2 of 2 results
1.

Quantifying cancer- and drug-induced changes in Shannon information capacity of RTK signaling.

blue CRY2/CRY2 BEAS-2B in silico STE-1 Signaling cascade control
Sci Rep, 10 Nov 2025 DOI: 10.1038/s41598-025-23075-y Link to full text
Abstract: Cancer can result from abnormal regulation of cells by their environment, potentially because cancer cells may misperceive environmental cues. However, the magnitude to which the oncogenic state alters cellular information processing has not been quantified. Here, we apply pseudorandom pulsatile optogenetic stimulation, live-cell imaging, and information theory to compare the information capacity of receptor tyrosine kinase (RTK) signaling pathways in EML4-ALK-driven lung cancer (STE-1) and in non-transformed (BEAS-2B) cells. The average information rate through RTK/ERK signaling in STE-1 cells was less than 0.5 bit/hour, compared to 7 bit/hour in BEAS-2B cells, but increased to 3 bit/hour after oncogene inhibition. Information was transmitted by 50-70% of cells, whose channel capacity (maximum information rate) was estimated through in silico protocol optimization. In BEAS-2B cells, channel capacity of the parallel RTK/calcineurin pathway surpassed that of the RTK/ERK pathway. This study highlights information capacity as a sensitive metric for identifying disease-associated dysfunction and evaluating the effects of targeted interventions.
2.

Reverse and Forward Engineering Multicellular Structures with Optogenetics.

blue red Cryptochromes LOV domains Phytochromes Background
Curr Opin Biomed Eng, 14 Oct 2020 DOI: 10.1016/j.cobme.2020.100250 Link to full text
Abstract: Understanding how cells self-organize into functional higher-order structures is of great interest, both towards deciphering animal development, as well as for our ability to predictably build custom tissues to meet research and therapeutic needs. The proper organization of cells across length-scales results from interconnected and dynamic networks of molecules and cells. Optogenetic probes provide dynamic and tunable control over molecular events within cells, and thus represent a powerful approach to both dissect and control collective cell behaviors. Here we emphasize the breadth of the optogenetic toolkit and discuss how these methods have already been used to reverse-engineer the design rules of developing organisms. We also offer our perspective on the rich potential for optogenetics to power forward-engineering of tissue assembly towards the generation of bespoke tissues with user-defined properties.
Submit a new publication to our database