1.
Photo-tunable hydrogels reveal cellular sensing of rapid rigidity changes through the accumulation of mechanical signaling molecules.
-
Yang, J
-
Wang, P
-
Zhang, Y
-
Zhang, M
-
Sun, Q
-
Chen, H
-
Dong, L
-
Chu, Z
-
Xue, B
-
Hoff, WD
-
Zhao, C
-
Wang, W
-
Wei, Q
-
Cao, Y
Abstract:
Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent. Strikingly, at certain frequencies, cellular traction forces exceed those on static substrates 4-fold stiffer, challenging the established molecular clutch model. We discover that the discrepancy between the rapid adaptation of traction forces and the slower deactivation of mechanotransduction signaling proteins results in their accumulation, thereby enhancing long-term cellular traction in dynamic settings. Consequently, we propose a new model that melds immediate mechanosensing with extended mechanical signaling. Our study underscores the significance of dynamic rigidity in the development of synthetic biomaterials, emphasizing the importance of considering both immediate and prolonged cellular responses.
2.
Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust.
Abstract:
Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.