Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Mikhail Baloban"
Showing 1 - 6 of 6 results
1.

Photoswitchable intein for light control of covalent protein binding and cleavage.

blue AsLOV2 VVD HEK293T HeLa MDA-MB-231 Signaling cascade control Transgene expression Cell death
Nat Commun, 11 Sep 2025 DOI: 10.1038/s41467-025-63595-9 Link to full text
Abstract: Precise control of covalent protein binding and cleavage in mammalian cells is crucial for manipulating cellular processes but remains challenging due to dark background, poor stability, low efficiency, or requirement of unnatural amino acids in current optogenetic tools. We introduce a photoswitchable intein (PS Intein) engineered by allosterically modulating a small autocatalytic gp41-1 intein with tandem Vivid photoreceptor. PS Intein exhibits superior functionality and low background in cells compared to existing tools. PS Intein-based systems enable light-induced covalent binding, cleavage, and release of proteins for regulating gene expression and cell fate. The high responsiveness and ability to integrate multiple inputs allow for intersectional cell targeting using cancer- and tumor microenvironment-specific promoters. PS Intein tolerates various fusions and insertions, facilitating its application in diverse cellular contexts. This versatile technology offers efficient light-controlled protein manipulation, providing a powerful tool for adding functionalities to proteins and precisely controlling protein networks in living cells.
2.

Deep-tissue high-sensitivity multimodal imaging and optogenetic manipulation enabled by biliverdin reductase knockout.

red DrBphP iLight HeLa mouse in vivo primary mouse cortical neurons primary mouse endothelial cells primary mouse fibroblasts Transgene expression
Nat Commun, 14 Jul 2025 DOI: 10.1038/s41467-025-61532-4 Link to full text
Abstract: Performance of near-infrared probes and optogenetic tools derived from bacterial phytochromes is limited by availability of their biliverdin chromophore. To address this, we use a biliverdin reductase-A knock-out mouse model (Blvra-/-), which elevates endogenous biliverdin levels. We show that Blvra⁻/⁻ significantly enhances function of bacterial phytochrome-based systems. Light-controlled transcription using iLight optogenetic tool improves ~25-fold in Blvra-/- cells, compared to wild-type controls, and achieves ~100-fold activation in neurons. Light-induced insulin production in Blvra-/- mice reduces blood glucose by ~60% in diabetes model. To overcome depth limitations in imaging, we employ 3D photoacoustic, ultrasound, and two-photon fluorescence microscopy. This enables simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of brain vasculature at depths of ~7 mm through intact scalp and skull. Two-photon microscopy achieves cellular resolution of miRFP720-expressing neurons at ~2.2 mm depth. Overall, Blvra-/- model represents powerful platform for improving efficacy of biliverdin-dependent tools for deep-tissue imaging and optogenetic manipulation.
3.

Nonlinear optical properties of photosensory core modules of monomeric and dimeric bacterial phytochromes.

red Phytochromes Background
Protein Sci, 18 Apr 2025 DOI: 10.1002/pro.70118 Link to full text
Abstract: Near-infrared (NIR) fluorescent proteins and optogenetic tools derived from bacterial phytochromes' photosensory core modules (PCMs) operate within the first (NIR-I) tissue transparency window under single-photon activation. Leveraging two-photon (2P) light in the second transparency window (NIR-II) for photoswitching bacterial phytochromes between Pr and Pfr absorption states offers significant advantages, including enhanced tissue penetration, spatial resolution, and signal-to-noise ratio. However, 2P photoconversion of bacterial phytochromes remains understudied. Here, we study the non-linear Pr to Pfr photoconversion's dependence on irradiation wavelength (1180–1360 nm) and energy fluence (41–339 mJ/cm2) for the PCM of DrBphP bacterial phytochrome. Our findings reveal substantially higher photoconversion efficiency for the engineered monomeric DrBphP-PCM (73%) compared to the natural dimeric DrBphP-PCM (57%). Molecular mechanical calculations, based on experimentally determined 2P absorption cross-section coefficients for the monomer (167 GM) and dimer (170 GM), further verify these results. We demonstrate both short- (SWE) and long-wavelength excitation (LWE) fluorescence of the Soret band using 405 and 810–890 nm laser sources, respectively. Under LWE, fluorescence emission (724 nm) exhibits saturation at a peak power density of 1.5 GW/cm2. For SWE, we observe linear degradation of fluorescence for both DrBphP-PCMs, decreasing by 32% as the temperature rises from 19 to 38°C. Conversely, under LWE, the monomeric DrBphP-PCM's brightness increases up to 182% (at 37°C), surpassing the dimeric form's fluorescence rise by 39%. These findings establish the monomeric DrBphP-PCM as a promising template for developing NIR imaging and optogenetic probes operating under the determined optimal parameters for its 2P photoconversion and LWE fluorescence.
4.

Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.

near-infrared red BphP1/Q-PAS1 DrBphP iLight 4T1 HeLa mouse in vivo murine lung endothelial cells primary mouse cortical neurons primary mouse fibroblasts Transgene expression
bioRxiv, 18 Oct 2024 DOI: 10.1101/2024.10.18.619161 Link to full text
Abstract: We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
5.

Single-component near-infrared optogenetic systems for gene transcription regulation.

red iLight E. coli HeLa mouse in vivo primary mouse hippocampal neurons Transgene expression
Nat Commun, 23 Jun 2021 DOI: 10.1038/s41467-021-24212-7 Link to full text
Abstract: Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing.
6.

Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome.

red Phytochromes Background
Commun Chem, 4 Jan 2021 DOI: 10.1038/s42004-020-00437-3 Link to full text
Abstract: Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
Submit a new publication to our database