Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Min Zhou"
Showing 1 - 2 of 2 results
1.

Optogenetic control of biomolecular organization reveals distinct roles of phase separation in RTK signaling.

blue CRY2/CRY2 iLID Magnets TULIP A549 HEK293T HeLa U-2 OS Signaling cascade control Organelle manipulation
Cell Chem Biol, 1 Dec 2025 DOI: 10.1016/j.chembiol.2025.11.001 Link to full text
Abstract: Multimerization and phase separation represent two paradigms for organizing receptor tyrosine kinases (RTKs). However, their functional distinctions from the perspective of biomolecular organization remain unclear. Here, we present CORdensate, a light-controllable condensation system combining two synergistic photoactuators: oligomeric Cry2 and heterodimeric LOVpep/ePDZ. Engineering single-chain photoswitches, we achieve four biomolecular organization patterns ranging from monomerization to phase separation. CORdensate exhibits constant assembly and disassembly kinetics. Applying CORdensate to mimic pathogenic RTK granules establishes the role of phase separation in activating ALK and RET. Moreover, assembling ALK and RET through varying organization patterns, we highlight the superior organizational ability of phase separation over multimerization. Additionally, CORdensate-based RTK granules suggest that phase separation broadly and robustly activates RTKs. This study introduces a optogenetic tool for investigating biomolecular condensation.
2.

Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.

blue green near-infrared red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
MedComm (2020), 4 Feb 2024 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: [This corrects the article DOI: 10.1002/mco2.226.].
Submit a new publication to our database